Final Report
Jay Burns, Julian Corona, Steven Cress,
John Walsh, Karen Yokum

May 9, 2012

Contents
1 Introduction
2 Detailed System Requirements

3 Detailed Project Description
3.1 System theory of operation L
3.2 System Block diagram oL
3.3 Detailed Design/Operation of the Subsystems
3.3.1 PWM . . .
3.3.2 SenSOTS . . . v v v e
3.3.3 UserInterface
3.3.4 Motors
3.4 Interfaces

4 System Integration Testing
4.1 Description of how the integrated set of subsystems was tested

5 Users Manual
5.1 How toinstall
5.2 Howtosetup
5.3 How to tell whether the system is working
5.4 How to trouble shoot the system

6 To-Market Design Changes
7 Conclusions

Appendices

A Setup of the Aircraft

B Debugging the system

C Eagle Documentation

D Parts List

E Code Listing

11
11
11
11
11

12

12

14

14

15

16

17

18

1 Introduction

Existing Unmanned Aerial Vehicle (UAV) technology is expensive and requires constant
supervision for control. For example, the Raven system used by the U.S. Army costs around
$200,000 for the airframe alone and requires a remote operator. Our approach offers a sim-
pler, more cost effective way to obtain the same information. This more practical approach
involves uploading a pre-defined flight plan to an on-board autopilot and having the UAV fly
autonomously. This system will allow the operator to focus only on gathering the required
intelligence rather than on flying the aircraft to and from the target area. The system will
also allow an operator to take control if desired. An existing remote control aircraft was
purchased for the aerial surveillance platform. An inexpensive, yet readily available, GPS
receiver, accelerometer, magnetometer, gyroscope, barometer, and sonar sensors are used to
guide the microcontroller-driven autopilot on the predetermined track. The main intelligence
of the system comes in the form of a proportional integral derivative (PID) controller. This
controller takes the data collected from the accelerometer and uses it to adjust the power to
the individual on board servo motors as needed to keep the aircraft level when suspended
from a string. The system also has a kill switch on the transmitter as a safety precaution
in the event that the system becomes unstable. The system is powered by two on-board
Lithium-Polymer batteries. The first battery powers the microcontroller and sensors. The
second battery, producing higher current, provides sufficient power to the servomotors used
to propel the vehicle. The platform requires a transmitter and receiver pair. The first set
is for allowing manual control of the airplane. This Tx/Rx contains 6 channels for aircraft
control and the autopilot on/off toggle. The user interface is the programming of the PID
controller for adjustment of k values in the equations for tuning of the stability algorythm.
As the project stands right now, we have a functioning board with sensors attached and
interfaced. The accelerometer is the only sensor giving us good data at the moment. The
gyroscope is sending some output data, but we have yet to desypher what it is and if it is any
good. The GPS has some code developed for both serial and NMEA interfacing, either of
which can be developed further for usability. We are able to send signals to the barometer,
but unable to obtain temperature readings from the device. For this reason, we did not
move on to attempt altitude readings. Analog code has been written for the sonar, but a
hang-up is preventing it from compiling. On the controls side, a simple PID controller has
been designed and can now begin to stabilize the quadrotor while hanging from a string.
The problem here lies in the reaction rate of the PID. When the system is tilted, it takes the
controller some time to ract to the change. This delay would have to reduce dramatically for
sustained flight to be possible. At this point, the quadrotor is in a good position to be handed
off to a future group. The next group would first want to finish the interface of between the
sensors and microcontroller. Collecting this data strenthens necessary information to create
a more robust contol algorithm. Then this project just becomes a controls problem.

2 Detailed System Requirements

There are a number of primary system requirements that must be fulfilled to address
the problem at hand. In any aerial system, safety must be the first priority. Therefore,

one requirement involves a robust method of allowing the user to control the aircraft if the
autopilot system malfunctions. This manual override is implemented through the control
algorithm. Take-off, landing, or any emergency situation will be controlled manually as
opposed to utilizing the autopilot function. A second requirement regards the stability of
the autopilot. This is also implemented in the control algorithm. Without stabilization,
the quadcopter could crash, or the platform could vacillate changing the flight dynamics.
In order to conduct surveillance, the quadrotor will need to provide a stable platform for a
camera that could be attached as a future addition to the project. To that end, we ensure
that the autopilot control software provides stabilization and error corrections to fly the
quadrotor. Also, the accuracy of the sensors is sufficient to derive accurate position and
velocity inputs to the autopilot. This requires that the PIC24FJ256(GB110 microcontroller
perform integral and differential calculus. A variety of sensors are used to provide the po-
sition and orientation of the quadrotor. These sensors include an accelerometer, barometer,
gyroscope, magnetometer, and ultrasonic range finder. The I?C and RS232 protocols are
required to interface these sensors with the microcontroller. Another design requirement
concerns the wireless interface for the UAV. The handheld radio controller uses 5 channels
(4 for primary flight control and a 5th to engage the autopilot). The video transmitter will
be on a non interfering wireless band that is powerful enough to send usable data over at
least the line-of-sight range of the quadrotor. Furthermore, the system is powered by two
sets of on-board batteries. The first set powers the microcontroller, camera, and sensors.
The second set, providing a higher current, provides sufficient power to the motors that are
used to propel and maneuver the quadrotor. The user interface consists of inputting the
desired GPS coordinates and taking radio control for takeoff, landing and manual override.
The user will input the GPS coordinates via a terminal command prompt.

The autopilot algorithm will start with a user input of GPS coordinates to the micro-
controller. This is the vehicle’s flight plan. The GPS and barometer provide x, y and z
coordinates that determine where the quadrotor is in space while the gyroscope determines
the orientation. The autopilot algorithm will track these coordinates, compare them to the
GPS and barometer data, and update the flight plan accordingly. The motors also responds
to accelerometer /gyroscope readings for orientation in the case of sudden gusts of wind or
other acts of God. The camera on board could send real-time visual data back to a user
interface. The GPS will interface with the microcontroller using a digital to serial protocol
by utilizing the transmit (Tx) and receive (Rx) pins. The barometer connects to the micro-
controller using I?C protocol which requires data and clock pins. The accelerometer provides
an analog out signal which will connect to the microcontroller via three pins (x, y, z). The
camera has a TTL serial to digital output which connects to the microcontroller via Tx
and Rx pins. The video transmitter connects to the microcontroller with a serial to digital
protocol using Tx and Rx pins. The SD card interfaces using SPI to the microcontroller.
A computer uses a USB interface with the microcontroller to program the flight plan. A
radio controller transmits user inputs to the receiver on-board the quadrotor. The receiver
will then pass these inputs to the microcontroller. An autopilot toggle input will determine
whether or not to pass the user inputs to the motors or use the output of the autopilot
algorithm. This requires 5 digital I/O pins between the receiver and microcontroller. The
barometer is an I?C that will require an I?C serial bus clock input (SCL), as well as an I*C
serial bus data line (SDA). The barometer has an operating voltage of 3.3 V and consumes

3

3 A. The accuracy of the pressure readings is 0.01 hPa. The LSM303DLHC is a combined
accelerometer and magnetometer that is also an I2C device. It has an operating voltage of
3.3 V and has full scale readings of 2 to 1.3 gauss. The ultrasonic range finder is a serial
device that can detect a distance greater than 20 ft. It also has an operating voltage of
3.3 V and consumes 2 mA. The gyroscope includes a sensing element and an 12C interface.
It is a three-axis angular measurement sensor that needs an input of 3.3 V. In total, the
microprocessor will require 21 digital I/O pins, 1 analog input pins, a USB interface, an
RS232 interface, and an I?C interface.

3 Detailed Project Description

3.1 System theory of operation

Action of the quadcopter will begin with manual take off from the transmitter exhibit-
ing its stabilization ability. After self calibration, the the flight plan is implemented. The
GPS is used to automatically track to the user inputted coordinates. All the while, the
accelerometer, barometer, gyroscope and magnetometer will collect data concerning the in-
ertia, altitude, angular rate and orientation respectively. The accelerometer utilizes a 3-axis
input based on the weight experienced due to gravity. This provides a three dimensional
vector associated with angular orientation of the vehicle. From these inputs, the microcon-
troller computes a running average of the samples to compare to the desired orientation.
Similarly, the barometer computes a running average of air pressure readings to determine
the altitude of the vehicle. This is also compared to the desired value of elevation. The gy-
roscope and magnetometer both deal with orientation of the vehicle. The gyroscope, using
properties of angular momentum, measures the angular rate, while the magnetometer, using
the strength and direction of magnetic fields, measures the azimuth and dip (inclination) of
the quadcopter.

From the output data of the sensors, the microcontroller adjusts the power setting of
each motor. This is governed by a change in the pulse width modulation duty cycle. If
forward mobility is desired, power is increased to the back two propellers providing the
necessary angle for quadrotor to advance forward. Then all four motors are then given an
equal amount of thrust to keep the quadrotor moving forward with an accurate stability.
Likewise, to cease forward progress, the power will be given to the front two propellers.
Thus, it will mitigate the original forward angle. The ultrasonic range finder is used primarily
during autopilot landings. This sensor, pointed directly down from the quadcopter provides
additional altitude data via sonar while approaching the ground.

3.2 System Block diagram

A block diagram detailing all of the major components for the proposed UAV is shown
in Figure 1. The devices are connected to the microcontroller as shown in Figure 2. As can
be seen in Figure 2, the GPS is connected to the serial transmit and receive pins which are
pins 49 and 50 respectively. The other devices, namely the accelerometer/magnetometer,
barometer, ultrasonic range finder, and gyroscope, are connected to the data and clock lines

| Fower |
1 Uner
Intertace

‘l
w
[
i

RasEOL vidd sanak Motar 4
GPEEN pa-urik GND w Mator 3

g mE

| Matar 1
N
i ~lLE]
& Nz
o~ LS
Gyro DROV
GyroINT 1

Arcel0any
WEBTH

USE Ry
[EFRYE
USBLT:

WELR e FICZAFJ2S6GE110

LLTY

Accel INT 1
coul INT 2

=

PGL
2eh]

Figure 2: Pin Diagram Connections
of the I2C pins (pins 59 and 58 respectively) of the microcontroller.

3.3 Detailed Design/Operation of the Subsystems
3.3.1 PWM

Pulse width modulation (PWM) is the system by which all command input and output
will interface with the microcontroller. The digital radio control system transmits PWM
signals on 6 channels at roughly 54 Hz, with the pulse width varying between 6 and 10.5%.
The receiver picks up these signals and, with appropriate power, outputs them on 6 pins.
The motors can receive PWM signals on a wide range of frequencies and pulse widths, but
for purposes of simplicity, we have elected to output 54 Hz signals between 6 and 10.5% to
the motors.

In terms of requirements, the output segment needed to generate the aforementioned

signal range and frequency in such a fashion that the motors received a robust and consistent
signal. Furthermore, the system needed to function independent of the main loop of the
microcontroller, in the event that some computation requires more time than the period the
of PWM signal. The PWM input needed to accurately capture the receiver channel signal
pulse lengths and, as with the output PWM, function independently of the main loop.

The output segment of the PWM interface was the first designed. The PIC24FJ256GB110
has Output Compare (OC) modules that are designed specifically for this purpose. To func-
tion properly, these modules first need to be mapped to pins using the Peripheral Pin Select
(PPS) feature of the microcontroller. Then, they must be configured by selecting a timer,
a sync source, the specific function required (in our case, edge aligned PWM), and finally,
setting the synchronous mode. Next, the timer must be configured. This requires writing the
period value to the period register, setting the prescale value, enabling the timers interrupt
and clearing the flag, and turning the timer on. We selected Timer2 to provide the clock
source for all OC modules. With the system clock running at 32 MHz, the timer increments
at 16 Mhz (Fosc/2). Thus, to achieve a 54 Hz signal, the prescale value was set at 64, and
the period register was set with a value of 4629. The timer then interrupts when the timer
register and period register generate a match. This interrupt triggers the timer value to reset
to 0, and the OC module to set its pin high and remain high until the value set in its 16 bit
register (called OCxR) is matched with the timer value. By writing to the OCxR register,
one can change the pulse width. This is illustrated in Figure 3. The code for implementing

Reset

Timer 2 Value : Timer 2 Period
Set Pin High
Match Event
QutputPin
7 Match Fvent A
’ Set Pin Low

QCXR

Figure 3: Flow chart of the input capture process

output PWM was written into a function called initializePWMoutput(). This function is
listed in appendix 1.1. Next, the input PWM system was configured utilizing the Input
Capture (IC) modules. This was accomplished by mapping the IC modules to the correct
Peripheral Pin Select pins, and setting those pins as inputs by writing to the TRIS register.
Next, the IC module was set to capture the timer on every signal edge, interrupt on every
capture event, sync with the selected timer, and enabling that modules interrupt flag. On

every interrupt, the value of the selected timer is written to a buffer called ICxBUF. In the
interrupt routine, the value of ICxBUF is removed and written to one of two variables called
[CxCapturel and ICxCapture2. If the pin is high when the interrupt is generated, the value
is written to the Capturel variable, and this is considered the start count. If the pin is low
when the interrupt occurs, the value is written to Capture 2. By taking the difference of the
numbers, the total number of counts that the pulse was high may be obtained. Since the
signals from the receiver are cascaded by channel, the timer is set back to 0 when the channel
5 IC module interrupts and the pin is determined to be low, thus signifying that all inputs
will remain low until the start of the next period. Timer4 was selected for input capture
and configured in the same manner as Timer2. The input capture process is illustrated in
Figure 4. The code for implementing the input chapter was written into a function called

Timer 4 Value Input Signal

Edge detected, pin high

Timerd value captured, written
to |CxCapturel

Timerd value captured, written

B to ICxCapture2 Edge detected, pin low

Total Pulse Length

If Channel 5, reset Timer4

Figure 4: Flow chart of the input capture process

initializePWMcapture() in addition to the interrupt service routines. This code is listed
below. Finally, several simple functions were written to make the input and output easier to
interact with. These are found in appendix 1.3. A function called readInput() simple checks
the integrity of the pulse count and scales it to a percentage from 0 to 100%. For channel
5, which is a switch, a function was written to determine the position of the switch called
readCH5(). Lastly, a function called setPower() takes in the four desired throttle positions
of each motor in terms of a percentage from 0 to 100%, scales them to a timer count, and
writes them to the respective OCxR registers. The input and output PWM were tested to
ensure functionality simply by reading in the values of each channel and outputting them
to the USBee. The input from the receiver is displayed in Figure 5. The output from the
microcontroller is displayed in Figure 6. In this image, it is outputting the four channels
from the transmitter with the throttle idle. Therefore, note that channels 1, 2, and 4 are
output an 8.2% duty cycle signal (since those those channels were at the neutral position),
and channel 3 is outputting 6% duty cycle signal, since the throttle was low.

s T i
D i | = = TR R

T 2 ez

o ek Tk

SRR St - T ——

Figure 6: Output from the microcontroller (screen shot of USBee)

3.3.2 Sensors

There are a total of six sensors used to extract data about the QuadRotor and the
environment. Those six sensors are GPS, Sonar, accelerometer, magnetometer, gyroscope,
and barometer; and they are used to determine the six dimensional orientation vector of
the QuadRotor. The two component of this orientation vector are position and angular
orientation. The GPS, the barometer, and sonar are used to determine the position vector.
The GPS is used to determine the QR’s x and y coordinates relative to the zero-frame,
the earth. The barometer is used to determine the QR’s z coordinate in the zero-frame.

Finally, the sonar is used to detect when the ground is within 10 feet of the bottom of the
QuadRotor. Each of these devices uses a different method to talk to the microcontroller.
The GPS transmits its data using UART, the barometer uses 12C, and sonar sends an
analog signal. The angular orientation of the QR is determined with a combination of the
accelerometer, magnetometer, and gyroscope. The gyroscope outputs angular rates in the x,
y, z vectors relative to the QuadRotor. The code used to get the Rotational vector is shown
in Appendix 1.4. The primary functions are Gyro_init() which initializes the Gyroscope,
Gyro_getRotVec() which gets the rotation vector, and Gyro_getOff() which is called in the
beginning of the code to zero out the data when there is zero rotation. The gyroscope is
particularly noisy; so to compensate for this every time the data is collected, we actually
pull the last 16 sets of values for each component. This data is then averaged to produce
less noisy information. Even with this averaging, the data still fluctuates pretty wildly. This
needs to be accounted for in any control algorithm that uses this data. The accelerometer
outputs an acceleration vector in x, y, z coordinates relative to the QR. Assuming there is
no actual acceleration of the QR in the x or y coordinates of the zero frame (which we don’t
want and are driving those accelerations to zero), the acceleration of the QR always points
in the z direction relative to the zero frame. This fact is very helpful and is used to help
determine the orientation matrix of the QR. The acceleration data collected is very accurate
and precise. There is no zeroing needed in the x or y directions. However, a zero factor of
roughly 0.2g is used for the z direction. This zero factor is determined in the initializations
section of the code which samples the acceleration in the z frame 256 times. This data is then
averaged and subtracted from 1 to get the offset. With the offset applied to the data, the z
component of the accurately shows 1g in the positive z direction at rest. The code for the
accelerometer is shown in Appendix 1.5. The main functions are Acc_init() which initializes
the registers in the Accelerometer needed for proper operation, Acc_getAccVec() which gets
the acceleration vector, and Acc_getZoff() which gets the z offset. Finally, the magnetometer
outputs a magnetic vector in the x, y, z coordinates of the QuadRotor. This vector should
always be pointing in the y direction relative to the zero frame assuming that there is no
other magnetic field present other than that of the earth. The code for the magnetometer
is shown in Appendix 1.6 and the primary functions are Mag_init() which initializes the
magnetometer, and Mag_getMagVec() which produces the magnetic vector. The magnetic
vector can then be used in conjunction with the acceleration vector to produce the rotation
matrix of the QRs coordinate frame. The magnetic vector and the acceleration vector are
orthogonal with the magnetic vector in the positive y direction of the zero frame, and the
acceleration vector in the positive z direction of the zero frame. The cross product between
the magnetic vector and the acceleration vector yield a vector mutually orthogonal in the
positive x direction of the zero frame. Using these three vectors, the rotation matrix can
be determined using the equation below where V_0 is the vector relative to the zero frame
and V_QR is the vector relative to the QuadRotor. Plugging in for the six vectors we know—
Acceleration, magnetic, and their cross product in both the zero and QR frame—the rotation
matrix can easily be solved. This matrix allows us to transform any vector in the zero frame
to a vector in the QR frame at a given time.

11 T2 713
21 T22 T23 V0=VQR

31 T32 133

3.3.3 User Interface

There are two ways the user interacts with the QuadRotor. The first is when inputting
the desired gps coordinates and to walk through initializing the QuadRotor. During this
stage, the user communicates with the microcontroller through a USB interface and a ter-
minal. The USB interface is connected to the microcontroller through a UART connection.
This type of connection allows for data to be transmitted to and from a controller without
a clock to synchronize the data. The second interface is the RC transmitter the user uses
to input commands to the QuadRotor during flight. The transmitter talks directly to a
receiver both operating on the 72.97 mHz band range. The transmitter uses five channels
to talk to the receiver. Four of the channels are for aircraft manipulation—roll, pitch, yaw,
and throttle—and the fifth channel is an on/off switch for the autopilot. The receiver then
outputs a PWM signal which is read by the microcontroller.

3.3.4 Motors

The motors are controlled by Electric Speed Controllers, or ESCs. The ESCs accept
the control information from the microcontroller via the PWM mentioned previously, and
interpret the signal so to vary the FETs accordingly. This signal is then routed to the motors
through the power distribution board on the lower level of the quadcopter. Power is also
routed to these ESCs through the power distribution board, which is being fed by the Li-Po
battery.

3.4 Interfaces

A user interface is required to input the desired GPS coordinates to the microcontroller.
A terminal window on a PC is used to communicate with the microcontroller through a USB
connection.

4 System Integration Testing

4.1 Description of how the integrated set of subsystems was tested

To test the pulse width modulation code, the duty cycle range of the transmitter had to
be determined. This was tested by connecting the USBEE logic analyzer to the radio receiver
and varying the throttle on the radio transmitter. The throttle was swept from 0% to 100%
and the signal was recorded. From this data, the range of the duty cycle transmitted could
be determined. At zero throttle, the duty cycle was 6%. At full throttle, the duty cycle
was 10.5%. (See Figure 5). This data was used to govern what the PWM algorithm must
output for the desired thrust. The Universal Asynchronous Receiver/Transmitter (UART) is
hardware in which data is loaded into a register and shipped out on a single line. The UART

10

provides a testing platform for the sensors by allowing us to display the data obtained via a
terminal window. Using this method, we were able to test readings from the accelerometer
to ensure we were collecting sensible data. Tests for the accelerometer consisted of tilting
the board and observing the magnitude and sign of the output. This allowed us to ensure
that the axis was properly set. In order to determine the output of the motors as a function
of the input duty cycle, a test bench was created that measured the thrust and torque of
the motors. Figure 7 shows the setup used to measure lift produced by the propellers while
Figure 8 shows the setup used to measure the torque produced by the motors. In Figure 7,
a WeighMax electronic postal scale measured the force each motor outputted by measuring
the upward force created when the throttle was varied. The device, in Figure 8, allows the
motor to spin freely about its center. A pull spring scale was attached to one end of the
platform and, using the equation for torque, the reaction torque of the motor felt by the
frame can be obtained for various throttle inputs. This procedure was repeated for each
motor and a best fit line was fitted to the data. This can be seen in Figure 9. This gives an
equation for thrust and torque as a function of the input duty cycle.

5 Users Manual

5.1 How to install

After installing the MPLAB X IDE, click New Project in the File menu. Under the
Microchip Embedded folder, select Standalone Project and click Next. Choose the Device
to be programmed. In our case, our Device was 24FJ256GB110. Select ICD 3 under the
Select Tool menu and click on the compiler used. Finally, give the project a name. Once
the project is created, header and source files can be created by right clicking the respective
group under the project heading. Choose the name of the file and the extension (either .c
or .h). When ready to build the project, click on the hammer icon in the top toolbar. If the
build is successful, the user can compile the program using melabs Programmer.

5.2 How to setup

For setup of the aircraft itself, see appendix 1. When mounting the board, ensure that
it is properly oriented as to cooresponnd to the controls algorythm you are using.

5.3 How to tell whether the system is working
See appendix 2.

5.4 How to trouble shoot the system

Trouble shooting the system requires self evaluation of the code. One of the first things
to check would be declorations. Be sure to understand what variables are global and which
are volitile. Other problamatic areas include pin assignments, bit registers, and interupt
functions.

11

6 To-Market Design Changes

As our project did not conclude in a not a completed product, many steps must be taken
before it becomes marketable. Through the course of the semester, we were able to complete
the hardware side of the project. The board was completed, and the sensors integrated with
the microcontroller. this made it so data regarding the quadrotor’s orientation and velocity
could be collected on board. Within the last week, a simple PID controller was developed
demonstrating that this data was in fact usable in flight. From here, the steps needed to
be taken are software based. From the data collected, a more robust control algorythm
must be developed to make flight possible. The PID controller we designed was too slow in
response to changes to maintain it’s hover. Once this is completed, more precise control of
the power delivered to the motors would make it so the quadrotor could take off and hover
by itself. With this step accomplished, it would be possible to begin to integrate the GPS
data available and track latitude and longitudinal coordinates, excicuting a flight plan.

7 Conclusions

Tough the project did not culminate in a fully autonomous UAV, great progress was
made in this direction. The board was designed and manufactured. Sensors including 3-axis
Accelerometer /magnetometer, 3-axis gyroscope, barometer, sonar and GPS were interfaced
with a PIC 24 microcontroller collecting data corresponding to position, orientation and
velocity of the vehicle. Now the project is in a good position to be handed off to the a future
group as mainly a controls project.

Figure 7: Setup used to measure lift produced by the propellers

12

Figure 8: Setup used to measure torque produced by the propellers

Input Percent vs Thrust

3.5
3 y = 0.0026x%+ 0.0289x
2.5
g
3
_El.b
'_
1
0.5
0 E:
O~ unoNOOOMM~RAgtTooN OO ~NOST oA OmMmWL O
HHHNNMMM'Q?"Z!’Q‘LHLOLOLCLDI“‘-I“‘-I“‘-COOOOOU‘\G‘\S
Input (%)

Figure 9: Data obtained from motors

13

Appendices

A Setup of the Aircraft

14

Arducopter 3DR-B

Thank you for purchasing an Arducopter 3DR kit. The Arducopter 3DR is a stable and
supported quadrotor frame in the ongoing development of the Arducopter code on DIYDrones. It
features a very durable Aluminum and G10 FR4 frame that can withstand hard impacts. The
wide legged stand allows for more stable takeoffs and landings and provides an unobstructed
view for a bottom mounted camera. The latest revision of this frame (revision B) features a
removable base for easy access to the PDB and APM mounting slots. The Arducopter 3DR-B is
designed and manufactured at the 3D Robotics headquarters in San Diego, California.

Arducopter 3DR-B Hardware

Name Qty.
M3x30mm Spacer.................c.ocovennnen. 04
M3x18mm Spacer...................cooeuenen. 12
M3x08mm Spacer.....................ooeeee. 04

B M3x30mm SS Screw........................ 04
B M3x25mm SS Screw......................... 12
M3x22mm Zinc SCrew........................ 08
B M3x05mm SS Screw..........coooveiiiiii, 16
M3x05mm Nylon Screw...................... ([08
RubberWasher.......................o . @] 04
M3 Metal Hex Nut.............................. © 16
M3 Nylon Hex Nut.............................. © 04
M3 Lock Washer.........................o... ©) 08
Arm x4
¢ a2 @ s a e
Leg x8 Base Top Base Bottom Base Cap Stack-up x2

3CR

Assembly Guide

4x Arm Assembly R H“‘»\,_\
——————————— \H\h‘w\‘ -\

3oR
Make sure the motor holes on the arm are facing up. The legs are mounted to the arms
using 2x M3x25mm SS Screws (Red) and 2x M3 Metal Hex Nuts. Insert two M3x18mm
spacers in between the legs and fasten with 4x M3x5mm screws (Purple) for support.
The motors are attached to the arms with 2x M3x22mm zinc plated screws () and

2x M3 Lock Washers (Make sure the screws go into the threaded holes in the motors
and not the ventilation grooves). Complete the assembly of all four arms.

Main Body Assembly

. M3x25mm SS Screw

. M3x30mm SS Screw

M3x05mm Nylon Screw

Assemble the main body of the Arducopter 3DR-B as shown above. The top and bottom
bases are fastened to the four Arm sub-assemblies using the hardware indicated on the
previous figures. The outermost screws (shown in Red) are M3x25mm SS Screws
fastened to a M3 Metal Hex Nut. The screws shown in Blue are longer (M3x30mm) and
will be used to support the stack-up later. These are also fastened with a M3 Metal Hex
Nut, but a Rubber Washer is also added on top of the Hex Nut. Finally, install 4x M3x08
Nylon Spacers in the middle using M3x05mm Nylon Screws (Shown in). Slide
the velcro strap through the grooves in the center. This will be used to hold the battery
in place.

PDB Assembly ‘

Run the two sets of narrow gauge wire through
the central hole. The stripped ends of the wires
should all emerge on the bottom side of the
PDB, the side that says “This Side Down”.
Solder the two wire red and black connector to
5V Out and GND respectively.

Next solder the four wire connector starting
with the orange cable to M1, white to M2, red
to M3, and black to M4. Use the pictures below
for reference.

Next, strip both ends of the thick gauge red and black wires about 4mm. Solder the black wire
into the large diameter hole marked “~” and the red wire into the one marked “+” . Slide a piece
of shrink tubing into each cable but don’t shrink it yet. Solder a Male Dean’s Plug to the other
end of the thick wires matching the red wire to the “+” on the connector and the black wire to the
‘=" sign. Pull the shrink tubing over the exposed connector leads and shrink it. Finally solder 3
pin headers into the open holes and female Dean’s connectors onto the exposed pads on edge
of the PDB board. Make sure to match the “+”, “=” markings on the Dean’s connector.

Stack-up Assembly : 3R

Install the PDB in the center and secure using 4x M3 Nylon Hex
nuts. Next install the Base Cap, note that the two slots close
together (marked in Blue) mark the front side of the quad. Align
them with the front arrow on your pdb. For setting correct motor
orientation plase visit the arducopter wiki
http://code.google.com/p/arducopter). The Base Cap allows for
easy access to the PDB as well as the motor wires. Screw 4x
M3x30mm Spacers to hold the Base Cap in place. The stack-ups
fit right on top secured on top by 4x M3x05mm Nylon screws

().

To attach your APM board to the Base Cap use double sided tape or screws. The Base cap slot
pattern allows for your APM1 or APM2 to be mounted in either “X” or “+” configurations. Refer to
the figures in the following pages for correct motor numbering and plug in the signal cables from
your ESCs to the PDB accordingly. Remember the on the four wire connector, the orange cable
is connected to M1. Use this as a reference when connecting the four wire connector to the
APM outputs. Orange should go to output 1.

APM BOARD ORIENTATION

THE APM BOARD SHOULD ALWAYS FACE FORWARD
REGARDLESS OF THE FRAME TYPE AND ORIENTATION

PROPELLERS 'GRIENTATION

frame + frame x

PUSHER PROPELLER
HAVE “R” OR “P"
AFTER SIZE MARK
(10X4.5R 10X4.5P)

—

CLOCKWISE COUNTER-CLOCKWISE
USE PUSHER PROPELLER USE NORMAL PROPELLER

We hope you enjoy your Arducopter 3DR-B. If you have any questions or concerns please feel
free to contact us via email at :

help@3drobotics.com

For additional information on how to set up your Arducopter 3DR and more information on the
Arducopter codebase please visit the Arducopter wiki at:

http://code.google.com/p/arducopter

B Debugging the system

Does it fly?

v

No

v

Are the batteries plugged in?

>

Yes

b[SYSTEM WORKING]

v

Yesg
T

v

Is the transmitter on?

Has the board been
programmed?

¥

Yeg

v

Reprogram

No

Plug the

batteries in

Turn on the

transmitter

15

Program
the board

C Eagle Documentation

120 Sensors

Debug Pins

16

Serial Bensors

S Ayl

T i =

W

o
] = é
% /' [o
OB (&
T
i T
0 1}
i 2 4 ‘f
- e) —
:
. I
: -1 A"
. 4 - af
- i 3
. —)
: CEE
. o Q0
M = ==
:) [ar)
. s
: 2573)
. — i
4 ’ 1
H
-
» f‘l'
I c
B B i |FRR2
%@ﬁ & | 10k LR g

EEE)

©06

D Parts List

(& &

(& G

&
®

@o°

ey

17

(0
@

()

&

T e e S R R et L B A e o N e Bl S Bt RS it A e e B L BB et i o s T,
i_x_elj ’

)

S e R]

Besecne

L Ty

RC4

(s

P2

| Team Name Part Description Source/Supplier Part Number Quantity
Radio Flyers [MediaTek MT3329 GPS 10Hz diydrones MT3329 1
Radio Flyers |Barometric Pressure Sensor - BMP085 Digikey 828-1005-2-ND 1
Radio Flyers [Ultrasonic Range Finder - Maxbotix LV-EZ1 sparkfun electronics |LV-EZ1 1
Radio Flyers |Accelerometer/Magnetometer Digikey 497-11918-1-ND 1
Radio Flyers [Triple Axis Digital Output Gyroscope Digikey 497-11071-1-ND 1
Radio Flyers |ZIPPY Flightmax 2200mAh 3S1P 20C HobbyKing Z722003S20C 4
Radio Flyers [Polymer Lithium lon Battery - 110mAh sparkfun electronics |PRT-00731 2
Radio Flyers |Futaba 6EXP 6-Channel FM Radio System w/R156F Receiver Tower Hobbies LXRXF4** 1
Radio Flyers |ArduCopter 3DR Quad KIT, Electronics diydrones 1
Radio Flyers [Voltage Regulators - Linear (LDO) Digikey AP7311-33WG-7DICT-ND 1
Radio Flyers [Mini USB connector Digikey A31727CT-ND 1
Radio Flyers [Ceramic capacitor 0.47 uF Digikey 587-1261-1-ND 1
Radio Flyers |Ceramic capacitor 10000 pF Digikey 478-1227-1-ND 1
Radio Flyers |Diode Digikey 641-1003-1-ND 1

Cost/piece Total Cost Link

$29.990 $29.99|https://store diydrones.com/MediaTek MT3329 GPS_10Hz p/mt3329-01.htm
$3.814 $3.81 . igi - -2-

$25.950 $25.95|http://mww.sparkfun.com/products/639
$8.430 $8.43 : igi - -1-
$12.950 $12.95 - -1-
$8.990 $35.96 | 2i =
$6.950 $13.90|http:/Anww.sparkfun.com/products/731

$129.990 $129.99 : i i-bi 2&|= **&P=

$589.000) $589.00]https://store.diydrones.com/ArduCopter 3DR_Quad_KIT_Electronics _p/kt-ac3dr-03.htm
$0.540 $0.54 . igi - - - - -
$1.510 $1.51|http://search digikey com/us/en/products/1734035-2/A31727CT-ND/773789
$0.180 $0.18 . igi - - -1-
$0.060 $0.06 - -1-
$0.350 $0.35 - -1-

Total $852.62

Manufacturer Manufacturer part number Notes
Mediatek 3329
Bosch BMP085
MaxBotix LV-EZ1
STMicroelectronics |LSM303DLHCTR
STMicroelectronics |L3G4200DTR
ZIPPY 3S1P
UNIONFORTUNE |41528
Futaba FUTK63** No Preference for frequency channel
DIY Drones
Diodes Inc. AP7311-33WG-7
TE Connectivity 1734035-2
Taiyo Yuden EMK107F474ZA-T
AVX Corporation 06035C103KAT2A
Comchip Technology CDSU400B

E Code Listing

18

QuadMain

File: QuadMain.c
Author: John J. walsh

Created on April 3, 2012, 4:31 PM

/ ORCRRRCRRORR RN NCRORR K RFORCRK SFCORCRK K RFORRCNORORCRCRORR SRR RICRCRK KSR A R RCRR SSCRRRR N RORCRR ORORR R RCORK K RORORK S OR N RSN R ROR N ROROSCONORONN
ER e i e T L o e R A b L Lo L A A A R A o L R A A e R R e L b T L o o R A i i A A b L A e A R L L b e A R A i e 1

Software License Agreement

Copyright © 2012 RadioFlyers and walsh Inc. A1l rights reserved.
RadioFlyers licenses to you the right to use, modify, copy, distribute, own
play with, tinker around, test, modify again, get pissed at, and insult
this code only when done at the University of Notre Dame, or in fact whenever
you feel 1ike it. It is recommended, however, that should you be just
starting this project now, that you immediately stop and pick another
project. We would recommend a project that cooks steak. This way you get
to eat steak with the University's money. That or a perpetual motion
machine. Those are pretty baller and probably much simplier than this
project is. 1If, however, you have finalized the project and are stuck with
it, I recommend the following steps. Move the computer to the side, stand
up, lean, bend over, pray to whichever god you like, kiss your ass goodbye.

You should refer to the individual comments for each section and function

for specific concerns and questions. Just about all of this code and
comments were written by John J. walsh (except anything in the PwM.h file.
all of that was writen by Jay Burns, who coincidentaly 1is a pilot....who
knew....). I take great pride in the fact that I didn't comment shit while
writing the code, and have gone back now and put in these comments for your
damn benifit. That being said, this is being done during finals week,

second semester senior year, so my fucks-given meter is at a pretty all time
low. So, if comments are not to your 1liking, and you don't understand what's
going on, feel free to get a piece of paper, write down your question/comment,
walk to the nearest trash can, and throw the piece of paper on the floor as
hard as you can... On a serious note, if you manage to read all this, and
figure out a way to contact me, I would be thuroughly impressed and would
probably answer any question you had.

***/

#if defined(_PIC24E_)
#include <p24Exxxx.h>

#elif defined (__PIC24F_)
#include <p24Fxxxx.h>

#elif defined(_PIC24H__)
#include <p24Hxxxx.h>

#elif defined(__dsPIC30F__)
#include <p30Fxxxx.h>

#elif defined (__dsPIC33E__)
#include <p33Exxxx.h>

#elif defined(__dsPIC33F__)
#include <p33Fxxxx.h>

#endif
#define FCY 16000000UL // 16 MHz cycle time for delay routines

Page 1

QuadMain
#include<stdio.h>
#include"Terminaluart.h"
#include <1ibpic30.h>
#include <p24F1256GB110.h>
#include <stdlib.h>
//#include "Analog.h"
#include <stdbool.h>
#include"12C.h"
#include"Misc.h"
#include"PwM.h"
#include<math.h>

//_CONFIG3(SOSCSEL_EC)
_CONFIGl (FWDTEN_OFF & JTAGEN_OFF)
_CONFIG2 (PLLDIV_NODIV & FNOSC_FRCPLL & FCKSM_CSECME & POSCMOD_NONE)

int MotorThrusts[4];

// _ Function Prototypes
int main(void);

int ma1n(vo1d) {
¥ In1t1a11z1ng var1ab1es

Yedede e e Yo e e e e e de e e de e e e e e e e e _.l_.l_.l_.l_/
ER R L

MotorThrusts[0] = 0;
MotorThrusts[1l] = 0;
MotorThrusts[2] = O;
MotorThrusts[3] = 0;

char string[20];
int NewTotalThrust = 0, TotalThrust = 0, DeltaThrust = 0;
TotalThrust = 0;
int 1i;
bool first = 1;
bool switch = 1;
float targetX = 0;
float targety = 0;
unsigned int pulses;
float DerivativeX = 0, Derivativey = 0, IntegralX = 0, Integraly = 0, errorX =
0, errorY = 0, lastErrorX = 0, lastErroryY = 0, NextIntX = 0, NextIntyY = 0, time = O,
temp, ThetaX, Thetay;
0 short int Px = 0, Py = 0, Ix = 0, Iy = 0, bx = 0, Dy = 0, Change23 = 0, Change34
int MotMin = 0, TempDell = 0, TempDel2 = 0, Delta = 0, MotMax = O;

/***

These are the values that you change to manipulate the P.I.D controler

* The max values are the maximum contribution each of the components can have
* Kp is for the proportional term
* Ki is for the integral term

e
w

* Kd is for the derivative term

x**/

int Imax = 4, Pmax = 4, Dmax = 3;
float Kp = 0.6;

float Ki = 1;

float kKd = 0.1;

Page 2

QuadMain

/%““****JJJ""""4““““““""""'J**********************************
e

* Here starts the initialization routine

JJJJ_J_J_J_JJJIIII' _l_llIIJJJJJJJJ_J_J_J_JJJII

e e e Yo e e e e e e e e e e e o

NN RN RCRORONC NN NN /
R e A R A e R

init_usart(103);
myputc('\f');
myputs("Initializing.");
init_12C(0x35);
myputc('.');

Acc_init(Q);

myputc('.');

Mag_init(Q);

myputc('."');
Bar_getParam();
myputc('."');
Gyro_init(Q);
myputc('.");
initializePwMoutput();
myputc('.");
initializePwMcapture();
myputc('."');
init_TMR1Q);
myputc('."');

Yedeedededededehdedehededehededeedededededeededeededeededededededededeededeededehededeedede e

* This is just a simple stoping mechanism to stop the code before all the
fd9ff§?§§gar¢.det¢rm19$9iJTbJ§J§11OW$.9v$J}9J90§9r9JFb¢.0uadB9F9rJJ§J]$y914/
myputc('\n');
myputc('\r');
myputs("Ensure switch is off...");
getPwM();
whiTe(switch == 1)

readCH5Q);
Switch = CHS5status;

}

myputc('\n');

myputc('\r');

myputs("Ensure QuadRotor is level and stable");
myputc('\n');

myputc('\r');

myputs("Getting offsets.");

Acc_getzoff();

myputc('."');

Gyro_getoff(Q;

PrintoffsQ);

Yedehedededededehdedehededehededeedededededeededeededeedededededededededededeededehededehedede e

This is put in here to initialize the ESCs should they need it. Otherwise
one can take the time here to test out the throtle. If the ESCs need to be
* calibrated put the throtle in low, then high for 4 sec, then low again.

***/

e
w

%

myputc('\n');

myputc('\r');

myputs("Turn switch on to start initialization...");
while(switch == 0)

readCH5Q);
Switch = CHS5status;
Page 3

QuadMain

3

myputc('\n');

myputc('\r');

myputs("Turn switch off when finished...");
while(switch == 1)

getPwM(Q) ;
Switch = CHS5status;
setPower(CH3value, cCH3value, CH3value, CH3value);

}

myputc('\n');

myputc('\r');

myputs("Turn switch on when ready to fly!");
while(switch == 0)

readCH5Q);
Switch = CHS5status;

Yedeedededededehdedehededehededeedededededeededeededeededededededededeededeededehededeedede e

Here begins the main loop of the code. The outer while Toop is to run
constantly and to allow us to have a kill switch (currently on ch 5) to

* turn the QuadRotor off and on at any point /

while (1){

readcH5Q) ;

CHS5status = 1;

Switch = CHS5status;

e
w

*

for (i = 0; i<4; i++)
} MotorThrusts[i] = 0; // set all motors to O
TotalThrust = 0;

setPower(0, 0, 0, 0);

IntegralX = 0; // clear integral terms of PID
Integraly = 0;

first = 1; // clear derivative terms of PID
lastErrorx = 0;

lastErroryY = 0;

¥*

Th1s starts the main 1oop 1ns1de the main 1oop Th1s is pr1mar11y to
* run our PID controler

Ge e Yo e e Yo e e Yo e Yo Yo e Yo e e Yo e e e e ¥ .n.l.l.l.l.l.l.l.l.l.l.l.l.l_.l_.l_.l_.l_.l_.l_.l_.l_J_J_J_J_J_J_J_J_J_J_J_J.J.J..l..l..l..l..l..l_.l_.l_.n..l..l..l..l..l..l..l./
w * ER e o R e A R e A o L A A A B e L A o L R R e L LS

while (Sw1tch 1

{
L111177777777771777777777
// Get Thrust input

/////////////////////////
getPwM(Q);

Switch = CHS5status;

CH3value = 25;
NewTotalThrust = CH3value*4; // Turn input into
'overall thrust input'
Page 4

QuadMain

MotMax = CH3value + 20;
}f (MotMax > 170)

MotMax = 170;

MotMin = CH3value - 10;
}f (MotMin < 0)

MotMin = 0;

DeltaThrust = (NewTotalThrust - TotalThrust)>>2; // Change for each motor

(initially all 1increased equally)

TotalThrust = NewTotalThrust;
for (i = 0; i<4; i++)

MotorThrusts[i] = MotorThrusts[i]+DeltaThrust; // Increase all the

motors egua11y

clockwise

;;///////////////////////

Get data

[1177777777777(1777117777

Acc_getAccvec();
Mag_getMagvec()
Gyro_getRotvec();

;;///////////////////////

Prin

111711777777/ 7771/77777777
//Printbata(Q);

¥*

* Quick attempt at determining Theta values. Not entirely sure whether
* it really works or not, gave up on it due to time

ThetaX
Thetay

atan2(Accvec[1],Accvec[2]);
atan2(Accvec[0],Accvec[2]);

myputc('\n');

myputc(C'\r');

sprintf(string, "%f",ThetaX);
myputs(string);

myputc(',');

sprintf(string, "%f",ThetaYy);
myputs(string);

myputc('\n');

m¥putC('\r');

//

QuadRotor oOrientation & motor numbers + for counter-clockwise - for

()2 1(+
N/
[A]

ly

X //Motor locations and axis

NN\
OO N

()3 4(-)
/////////////////////////////é////é///
age

QuadMain

///////////////////////////////////

// P.I.D. Controller

// 3 sets to change, motors 1&4 motors 1&2, and motors 1&3
// correspond Y accel, and Z rot

//
/*

////////////////////////////////

B Ry
ww Yok ww e ww Yok

* P section of PID contro1er Th1s controls proport1ona1 response to

* some offset. oOur PID controler is simply trying to drive acceleration

* in the X and Y directions relative to the QuadRotor frame to zero. This
* sort of works, but I would advise you to try and develop system to

* determine orientation angles and drive those to given value

***/
errorX = AccVec[0]-targetX;
errorY = AccVec[l]-targety;

~//errorz = RotVec[3]-targetz; // Never got to implementing it for
rotations about z axis

if (errorX >=0)

Px = ceil(Kp * round(errorx*10)); // Nets a range over
which Px is increased
// 0->0.05 = 0,

I
0.05->0.3 =1, 0.3->0.6 = 2, 0.6-> = 3

%1se
} = floor(Kp * round(errorx*10));

if (errory >=0)

Py = ceil(Kp * round(errory*10)); // Nets a range over
which Px is 1increased
// 0->0.05 = 0,

¥
0.05->0.3 =1, 0.3->0.6 = 2, 0.6-> =3

else
{ .
Py = ceil(Kp * round(errory*10));

}

myputc('<');

myputi (Px);

myputc(',');

myputi(P);

m¥putc(>');

* This starts the integral part of the PID. First thing to do is determine
* the amount of time that has passed. Pretty sure the algorithm to do_
* that works, but never fully tested it. One might want to Took into 1it.

B P P P P PO PR PR PR PR PR PR PR PR PR PR PR PR PN P s s s s s s s s s s DS R S S S N PR R RS DU PN P P PR PR PR P P P PO P R PR PR P P P P P P P P P PN P PN PN P N N /
Jedededededede de e de de dedede e e e de de e e e e de dedede e e e de dede S e s e de de dede e e e e de T de e e e e e e e e e e e e e de e e
if (first) // In here to disregard data from first loop through

Page 6

]] QuadMain
first = !first;
time = 0;

else

pulses
TMR1 =
temp =
time =

}
}f (errorx>=-0.05 && errorx<=0.05)

= TMRL1;

0;
(float)pulses;
temp*64/16000000;

! NextIntX = O;
[117117771077777/7777777/7/77/77777/7/77/777/7/7/7///

else // yields increase of 1 if error
is 0.1 for 1 sec

NextIntX = errorx*10*time;

if (errory>=-0.05 && erroryY<=0.05)

NextIntY 0;

else

{

NextIntY

errorY*10*time;

IntegralX
Integraly

IntegralX + NextIntX;
IntegralYy + NextInty;

if (IntegralX > Imax)
IntegralX = Imax;

else if (IntegralX < Imax*-1)
IntegralX = -1*Imax;

}f (Integraly > Imax)

Integraly

Imax;
else if (Integraly < Imax*-1)
Integraly = -1*Imax;

//Integralz = Integralz + errorz*time;

}f (errorx >=0)
Ix = floor(Ki*IntegralX);

else

{
}

if (errory >=0)

IX ceil(Ki*IntegralX);

Page 7

QuadMain

Iy floor(Ki*Integraly);

else

{
}

¥*

myputc('<');
myputi (Ix);
myputc(',');
myputi (Iy);
myputc(' >');

Iy ceil(Ki*IntegralYy);

/***

* This begins the derivative section of the PID controler. Never really
had a good grasp of what I wanted the derivative term to do, so kinda
just pulled numbers out of thin air to come up with oridinal equation.
Might want to come up with better way of determining Derivative terms.
Also, hesitant about its full functionality because Derivative first
time throught should be infinity (because time is 0), but it doesn't
seem to be. Should check that out.

PO RIS

FORCR RN RORORRRCRORK N RN K SFORORK N ORNNORORCROROR SRR R R AR SRR A RN SCRORR N RORON NSO SCSORK N RORCRK SRR N NOROROSORORCNON /
B o o R A A L A A A R R L A R R e A R R R L A e e L o R R A A A g b T L b A e b L A o L R R e L L

Derivativex = (errorX-lastErrorX)/time;
Derivativey = (errorY-lastErrorY)/time;
//Derivativez = (errorz-lastErrorz)/time;

if (errorx >=0)
= floor(Derivativex*Kd); ;///////////////////

} Yields change of 1 for change of
0.1g in 0.1 sec
else

{
3
if (errory >=0)
= floor(Derivativey*Kkd); ;///////////////////

Yields change of 1 for change of

Dx = ceil(Derivativex*Kd);

0.1g in 0.1 sec
else

{
}

Dy = ceil(DerivativeY*Kd);

/*
myputc('<"');
myputi (Dx) ;
myputc(',');
myputi(D);
myputcc >');

/***

Page 8

QuadMain

o
* Ensure all values under max
***/

if (Px > Pmax)
PXx = Pmax;

else if (Px < -1 * Pmax)
Px = -1 * Pmax;

%f (Py > Pmax)

¢ Py = Pmax;

g]se if (Py < -1 * Pmax)

! Py = -1 * Pmax;

%f (Ix > Imax)
Ix = Imax;

else if (Ix < -1 * Imax)
IX = -1 * Imax;

}
}f (Iy > Imax)

Iy = Imax;

g]se if (Iy < -1 * Imax)

{ Iy = -1 * Imax;

if (Dx > Dmax)

¢ Dx = Dmax;

else if (bx < -1 * Dmax)
Dx = -1 * Dmax;

%f (Dy > Dmax)

¢ Dy = Dmax;

%1se if (Dy < -1 * Dmax)

! Dy = -1 * Dmax;

Yedededededededededededededefededefedededeededehdefeededeededeedededededededededededeedededededededededededeedededededehededeededeedede el

* put all the terms together. Might want to look into pulling the K

values outside of the functions so they can %ust be multiplied
* directly to the P, I, and D terms respectively

FORCRR RN RN RCRORK K ORI SRORORK N OB NNORORCNOROR N NORRNK RCRR K AR SRR A RN SOOI NI RORON RSO SRR RSN NORORNNOROROSORORCNON /
B o o o R A A e L A A A O R o A R A i e e A e L e AR R e L 1 b T L o T A A A o L L R A g o L A e L L e R 3

Change23 PXx + IX + DX;
Change34 = Py + Iy + Dy;
// Change24 = Kp*errorz + Ki*Integralz + Kd*Derivativez;

Page 9

QuadMain

///

/
; hange individual motor thrusts

///

over all form. Broken up to ensure total thrust remains 'constant'
MotorThrusts[1-1] MotorThrusts[1-1] - Change23 - change34; //- Change24;
MotorThrusts[2-1] MotorThrusts[2-1] + Change23 - change34; //+ Change24;
MotorThrusts[3-1] MotorThrusts[3-1] + Change23 + Change34; //- Change24;
MotorThrusts[4-1] MotorThrusts[4-1] - change23 + change34; //+ Change24;

[
w

/
/
/
/

/***

This following is just a whole lot of coding to ensure that the
'total thrust' of all 4 motors remains a constant. This is done by
first adding the change in one direction, then seeing if that change
resulted in a value over the allowed max or under allowed min, then
correcting accordingly. Pretty sure this works as intended

[
w

PO Y

FORCRR RN RORORRNCRORK N ORI SFORORK N ORNNORORCNORORRRORRNK RN AR SRR A RCRORK SOOI NI RORON NSO SCSORK N RORORK SOROR N NOROROSORORCONON /
B o o R A A L A A A R R L A R R e A R R R L A e e L o R R A A b A e b T L b A e i L A o L R R e L L

// x dimension changes (rotation about y (yaw))
MotorThrusts[1-1] MotorThrusts[1-1] - Change23;
MotorThrusts[2-1] MotorThrusts[2-1] + Change23;
MotorThrusts[3-1] MotorThrusts[3-1] + Change23;
MotorThrusts[4-1] MotorThrusts[4-1] - Change23;

// Check if change23 sends a motor below 0O
}f (MotorThrusts[2-1] < MotMin || MotorThrusts[3-1] < MotMin)

TempDell = MotMin - MotorThrusts[2-1];
TempDel2 MotMin - MotorThrusts[3-1];
}f (TempDell > TempDel2)

Delta = TempDell;
else

Delta = TempDel2;

}
%1se if (MotorThrusts[1-1] < MotMin || MotorThrusts[4-1] < MotMin)

TempDell = MotMin - MotorThrusts[1-1];
TempDel2 MotMin - MotorThrusts[4-1];
}f (Tempbell > TempDel2)

Delta = -1*TempDell;
else

Delta = -1*TempDel2;

else
Delta = O0;

}
MotorThrusts[1-1]
MotorThrusts[2-1]

MotorThrusts[1-1] - Delta;
MotorThrusts[2-1] + Delta;
Page 10

QuadMain
MotorThrusts[3-1] + Delta;
MotorThrusts[4-1] - Delta;

MotorThrusts[3-1]
MotorThrusts[4-1]

// Check if change sends motors above max
if (MotorThrusts[2-1] > MotMax || MotorThrusts[3-1] > MotMax)

TempDell = MotMax - MotorThrusts[2-1];
TempDel2 = MotMax - MotorThrusts[3-1];
}f (TempDell > TempDel2)

Delta = TempDell;
else

Delta

TempDel2;

else if (MotorThrusts[1l-1] > MotMax || MotorThrusts[4-1] > MotMax)

TempDell = MotMax - MotorThrusts[1-1];
TempDel2 MotMax - MotorThrusts[4-1];
}f (Tempbell > TempDel2)

Delta = -1*TempDell;

else
Delta = -1*TempDel2;

}
else

Delta = O;
MotorThrusts[1-1] = MotorThrusts[1l-1] - Delta;
MotorThrusts[2-1] = MotorThrusts[2-1] + Delta;
MotorThrusts[3-1] = MotorThrusts[3-1] + Delta;
MotorThrusts[4-1] = MotorThrusts[4-1] - Delta;

// y dimension changes (rotation about x (pitch))
MotorThrusts[1-1] MotorThrusts[1-1] - Change34;
MotorThrusts[2-1] MotorThrusts[2-1] - Change34;
MotorThrusts[3-1] MotorThrusts[3-1] + Change34;
MotorThrusts[4-1] MotorThrusts[4-1] + Change34;

// Check if change34 sends a motor below 0
}f (MotorThrusts[3-1] < MotMin || MotorThrusts[4-1] < MotMin)

TempDell = MotMin - MotorThrusts[3-1];
TempDel2 = MotMin - MotorThrusts[4-1];
}f (TempDell > TempDel2)

Delta = TempDell;
else

Delta = TempDel2;

Page 11

Quadmain
?1se if (MotorThrusts[1-1] < MotMin || MotorThrusts[2-1] < MotMin)

TempDell = MotMin - MotorThrusts[1-1];
TempDel2 = MotMin - MotorThrusts[2-1];
}f (Tempbell > TempDel2)

Delta = -1*TempDell;
else

Delta = -1*TempDel2;

}
else
Delta = O;
MotorThrusts[1-1] MotorThrusts[1-1] Delta;
MotorThrusts[2-1] MotorThrusts[2-1] Delta;

MotorThrusts[3-1]
MotorThrusts[4-1]

MotorThrusts[3-1] + Delta;
MotorThrusts[4-1] + Delta;

// Check if change sends motors above max
}f (MotorThrusts[3-1] > MotMax || MotorThrusts[4-1] > MotMax)

TempDell = MotMax - MotorThrusts[3-1];
TempDel2 = MotMax - MotorThrusts[4-1];
}f (TempDell > TempDel2)

Delta = TempDell;

else

Delta = TempDel2;

}
else if (MotorThrusts[1l-1] > MotMax || MotorThrusts[2-1] > MotMax)
TempDell = MotMax - MotorThrusts[1-1];

TempDel2 = MotMax - MotorThrusts[2-1];
}f (Tempbell > TempDel2)

Delta = -1*TempDell;

else
Delta = -1*TempDel2;

}
else

Delta = O;
MotorThrusts[1-1] = MotorThrusts[1-1] - Delta;
MotorThrusts[2-1] = MotorThrusts[2-1] - Delta;
MotorThrusts[3-1] = MotorThrusts[3-1] + Delta;
MotorThrusts[4-1] = MotorThrusts[4-1] + Delta;

// Making sure it never goes above 100 or below 0

for (i = 0; i<4; i++)
Page 12

QuadMain

}f (MotorThrusts[i] > 100)

) MotorThrusts[i] = 100;
if (MotorThrusts[i] < 0)
MotorThrusts[i] = 0;

}
LIIT1117707777777177777777777777777

Set Thrust values

I1777777777777777777777777777777777

g

myputc('\n');
myputc('\r');

myputc('<');
myputi(MotorThrusts[1-1]);
myputc(',');
myputi(MotorThrusts[2-1]);
myputc(',');
myputi(MotorThrusts[3-1]);
myputc(',');
myputi(MotorThrusts[4-1]);
myputc('>");

myputc('\n');
m¥putC('\r');

setPower(MotorThrusts[1-1], MotorThrusts[2-1], MotorThrusts[3-1],
MotorThrusts[4-1]);

}

}
}

Page 13

I2C
* This header file holds all the functions necesary for I2C to work as well
as communicating and getting data from the I2C sensors (accel, magnetometer,
gyro, and barometer). As of the end of the semester, all of the sensors can
be written to and read from, but only the accel seems to be producing usable,
actual data. Not sure what is wrong with the others, but the data they give
is just not ri?ht. Probably in the functions, but could be an error in
hardware as well

***/

SLosLosmosmosm sm
PN I

#include<math.h>
YedeededeededeededeededehededehededehededeedededededeededefededeTededeedededededeedededededededede el

I2C addresses of the sensors /
char GyroAddw = 0b11010000;
char GyroAddr = 0b11010001;
char AccAddw = 0b00110010;
char AccAddr = 0b00110011;
char MagAddw = 0b00111100;
char MagAddr = 0b00111101;

g
w

YedeededeededeededeededehededehededehededeededeededeededefededeTededededededededeedededededededede el
Je '

* Global variables for all the data vectors and any off sets
***/

float Accvec[3]; // <X,y,z> current acceleration vector

float Magvec[3]; // <X,y,z> current Magnetometer vector

int Rotvec[3]; // <X,y,z> current Angular velocity vector

int RotOff[3]; // <x,y,z> 0 offset for angular rotation

float orientvec[3]; // <X,y,z> approximate vector of absolute angles
float Acczoff = 0;

float Temperature;

* This function initializes I2C. It takes in a char value for the baud rate

* and sets the I2C to communicate at that speed. Note, the equation given 1in

* the data sheet to determine what the rate char needs to be is incorrect. Not
j really sure where the proper equation is found, but just kinda guessed at the

* values.

***/

zoid init_I2C(char rate)

TRISAbits.TRISA2 = O;
PORTAbits.RA2 = 0;
int i;
for (i = 0; i < 255; i++) // Put in to make sure sensors don't
g //think they're supposed to be outputing
ata
PORTAbits.RA2 = !PORTAbits.RA2;
_delay_us(1.25);

TRISAbits.TRISA2 = 1;
I2C2BRG = rate;
I2C2CONbits.I2CEN = 1;
I2C2STATbits.IwWCOL 0;
I2C2STATbits.I2COV 0;
IFS3bits.MI2C2IF
IFS3bits.SI2C2IF
return;

ool

/JJJJJJJJJJJJJJ e Y e
w w w Fededed w Yok

Function to call whenever you want to issue a stop command in IZC
Page 1

%

I2C

***/

zoid I2Cstop(void)

IFS3bits.MI2C2IF
I2C2STATbits.BCL
I2C2STATbits.IWCOL
I2C2CONbits.PEN = 1;

I
oo

0;

E R o o R A A L A A A o L R A R L A o A e L e L R e L o L A R L R e A A b A A L A AR A e b L L o e A e R R S

* Function to call whenever you want to issue a start command in I2C

OO RO R ORI NN RO v¢¢¢¢m¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢mmmm¢¢¢¢mmmmmmm¢¢¢¢¢¢¢¢¢¢¢m¢¢¢¢¢¢¢¢/
PR L e T L e R AR A L b T p e R R L A o R A R e A b b A b e L o T L A o L L o e A A e A A L A A e L A o L S e A e e

¥01d I2Cstart(void)

/ JOROR RO R ROROROROROS N RSO SFOSOSOSOROSOSOSOSOSOSOSUSUSUSOSUSTSUSURCRUNUSCSOSOSURUSUSURKOROSUSCOROSURTROSORCSONOROR NOSOROSOSOSOSOUSOSUSUSOSUSTRON

|
-l OO

IFS3bits.MI2C2IF
I2C2STATbits.BCL =
I2C2STATbits.IwWCOL
I2C2CONbits.SEN = 1
return;

E R o o R A A i L A A A L R A A o A A e e L e A R e L o o R A A e g o g A e A e i L A o L R R e L L

* Function to call whenever you want to issue a repeated start command in I2C

JOROR OO ROROROROROS N RSO SFOSOSONOROSOSOUSOSOSOSOSORUSUSOSUSUSUSURCRUNUSSOSOSURUSUSURSOROSCUSOROSURCROSOSCSONOSOR NOSOROSOSOSOSOUSOSOUSOSOSUSTRON /
E R o R A A L A A A L R A R e A o A e e L e R e L o L A R L L R A A e A A o L A AR A e i L L o T A R R L

¥01d I2Crestart(void)

/ JOROR OO ROROROROROS N RSO SFOSOSOSOROSOSOUSOSOSOSOSUSUSUSOSUSTSUSURCSUSUSSOSOSORCUSUSUROROSUSCOROSURCROSORCSONOSOR SOSOROSOSOSOSOUSOSUSUSOSUSTSON

IFS3bits.MI2C2IF 0;
I2C2STATbits.BCL = 0;
I2C2STATbits.IwCOL = O;
I2C2CONbits.RSEN = 1

return;

E R o o R A A i L A A A o L R A R L A o A e L e L R e L b o L A R L L R e A A e A A L A AR e A g b L L o e A e R R

* Function to get what was received by the microcontroler. Returns 8 bits in
* the Receive register

Yede ke

short int I2Crx(bool ack)

/ JOROR OO ROROROROROS N RSO SFOSOSOSOROSOSOUSOSOSOSOSOSUSUSOSUSTSUSURCRUSUSSOSOSURCUSUSURSOROSUSCOROSURCROSURCSONOSOR NOSOROSOSOSOSOSOSUSUSOSUSTSON

»***/

short int data;

data = I2C2RCV;
I2C2CONbits.ACKDT ack;
I2C2CONbits.ACKEN = 1;
return data;

YedeededeededeededeededehededeededehededeededeededeededefededeTededeedededededeedededededededede el
- . . .

* Function to put the microcontroler in Rx mode
***/

void I2Csetrx(void)

IFS3bits.MI2C2IF = 0;
I2C2STATbits.BCL = 0;
I2C2STATbits.IwCOL = O;
I2C2CONbits.RCEN = 1;
return;

/***

* Function to transmit data out to the SDA bus. Takes in 8 bits of data to be
* sent out, returns whether previous command was acknowledged.
bool 12Ctx(char data)

Page 2

I2C

{
//bit ack;
I2C2TRN = data;
return I2C2STATbits.ACKSTAT;
//return ack;
* Funciton that returns whether someth1ng was ackno1edged.
JJJJJJJJJJJJJJ J-'-'-'-'-'-'-'-'-'-'-l-l-l JJJJJJJJJJJJJJ'1'»'7'»"1'»"1'»"1'»'7'»‘7'»‘7'»"1’»‘7'»‘7'»‘7'»‘7'»‘7'»‘7'»‘7'»‘"»‘/

bool IZCack(vo1d)

//bit ack;)
return I2C2STATbits.ACKSTAT;
//return ack;

/JJJJJJJJJJJJJJ

* wait func1ton used to have the m1crocontro11er wait until 12C process has

been completed. This has to be called after EVERY I2C command given. This

was never straight up put in all the functions because a beter design practice

would be to establish a state machine and have the code run through states
instead of having the microcontroller kill time by simply waiting. Never got
* around to making the state machine though. /

void I2cwait(void)

{ while (I2C2CONbits.SEN || I2C2CONbits.RSEN || I2C2CONbits.PEN ||

I2C2CONbits.RCEN || I2C2CONbits.ACKEN);

Sevede e e Yo e e e e e e e e e e e e e Yo e e Yo e e Yo Yo e Yo Yo Yo Yo e o

sLosLosm s
ok N X

{}
while (!'IFS3bits.MI2C2IF);

{}
! IFS3bits.MI2C2IF = 0; //IF flag set back to O
////////////////////////////////
// All of the Gyro Functions
// Gyro init
// Gyro_getRotvec
// Gyro_getoff
// DeterminePos <- doesn't work
[111171777777771/77/77/7777/7/7777
/JJJJJJJJJJJJJJ JJJJJJJJJJJJJJ ”_.‘l‘_.l_.l_.‘l‘_” JJJJJJJJJJJJJJ "-.'-' '7'71\7'\"1’»‘7'»‘7'»‘7'»‘7'»‘"»‘7'»‘"»‘"»‘

* Function to 1n1t1a11ze the gyro. No inputs or outputs needed For specifics
* on what I am setting the gyro to do consult the datasheet

***/
void Gyro_init(void)
bool ack;

I2Cstart();
I2cwait();

ack = 12Cctx(0b11010000); //Device address
I2cwait();

ack = 12Cctx(0x20); //Mem address
I2cwait(Q;
ack = 12Cctx(0b11001111); //stuff written out

I2cwait();
ack = 12Cctx(0x00);
Page 3

I2C

I2cwait();

ack = 12ctx(0b00000000);

I2cwait();

ack = I2Cctx(0x00);

I2cwait();

ack = I2Cctx(0b01001010);

I2cwait();

I2Cstop();
I2cwait();

I2Cstart();
I2cwait();

ack = 12Ctx(0b11010000); //Device address
I2cwait(Q);

ack = 12Ctx(0x2E); //Mem address
I2cwait();

ack = I2Cctx(0b01011111);
I2cwait();

I12Cstop();
I2cwait();

/***

* Function to get the 'Rotation Vector.' This is a vector of the angular

% ve1ocg%y of the GuadRotor. This takes in no input, and changes the global

* variable.

* notes: Giving values about an order of magnitude off. Might have to do with
* the way I'm getting 32 values at once and averaging. Not sure if

* that 1s work1ng properly.

e e dededeve e de Yo e e Yo e ot e e e e e e e e e ny ¢¢¢¢¢¢mm¢¢¢mmmmmmm¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢/
ER e e A o R e A A o A A e L R e A e L A o e A e R LR S

¥o1d Gyro_getRotVec(vo1d)

bool ack;

int i;

short int Xlsb, Xmsb, Ylsb, ymsb, zlsb, zmsb;
int TempX=0, TempY=0, Tempz=0;
I2Cstart();

I2cwait();

ack = 12Ctx(GyroAddw);
I2cwait();

ack = 12Cctx(0b10101000);
I2cwait();

I2Crestart();

I2cwait();

ack = 12Ctx(GyroAddr);
I2cwait();

Eor (i = 0; i<16; i++)

I2Csetrx();
I2cwait(Q);
XIsb = 12Crx(0);
I2cwait(Q);
I2Csetrx();
I2cwait(Q);
Xmsb = 12Crx(0);
I2cwait(Q);
Page 4

}

I2Csetrx();
I2cwait();

Y1lsb = 12Crx(0);
I2cwait();
I2Csetrx();
I2cwait();

Ymsb = 12Crx(0);
I2cwait();
I2Csetrx();
I2cwait();

Z1sb = 12Crx(0);
I2cwait();
I2Csetrx();
I2cwait();

zmsb = I2Crx(1);
I2cwait();

TempX
Tempy
Tempz

I2Cstop();
I2cwait();

TempX >>=
Tempy >>=
TempzZ >>=
RotVec[0]
RotVvec[1]
RotVec[2]

IIHII#J>#

I2C

TempX + ((Xmsb << 8) | Xlsb);
TempY + ((ymsb << 8) | Ylsb);
Tempz + ((zZmsb << 8) | zlsb);

Create runn1n

//
//////////////////////

;;/////////////////////////////

Divide

///////////////////////////////

(Tempx 7.629)-RotOoff[0];
(TempY*7.629)- Rotoff[l],
(Tempz*7.629)-Rotoff[2];

1111777777717771717177

average

YedeededeededeededeededehededeededehededeededeededeededefededeTededeedededededeedededededededede el

* This function gets the offsets for the gyro by sampling 256 times, averaging,

* and then sett1ng that value to the offset _vector.

e dede e e Yo e e Yo e Yo e e

¥o1d Gyro_getoff(vo1d)

int
int
int
int i
for

{

DataX
Datay
DataZ

(1 =0;1<256;1++)

[|
o

e e de e e de e e e e e e e e

Gyro_getRotvec();

DataX
Datay
DataZ

delay|
myputc('.

RotOff[0]
RotOff[1]
RotOff[2]

DataxX+RotVec[0];
DataY+RotVec[1];
Dataz+RotVec[2];
m§§80);

(patax>>8);
(patay>>8);
(pataz>>8);

e e e dedeve e Yo Yo e e e Yo e

ORI ORORCORORON
PR e e A R R

JOSORON /
wR

YedeededehededeededeededehededehededehededeededeededeededefdedeTededededededededeedededededededede el

* This funciton is supposed to be a simple integration.

Doesn't work.

Not

* sure if didn't work because gyro values sucked, or didn't work because some
Look into this heav11y before using

J-J-J-J-J-J-J-J¢J¢J¢J¢J¢.L.L.L.L.L.L.\-.\-.\-.LJ_J-J-J-J-J-J-J-J¢J¢J¢J¢J¢.L.L.L.L.L.L.L.L.L.LJ:{:{:{:{:{:{:.’:.’:/

* part of algorightm sucked.

Page 5

. . - IZC
void DeterminePos(void)

int pulses;

float time;

TL1CONbits.TON = 1;

pulses = TMR1;

TMR1 = 0O;

time = (f1oat)pu1ses *8/16000000;

orientvec[0] = (float)RotVec[0]*time/1000 + Orientvec[0];
orientvec[1l] = (float)RotVec[1l]*time/1000 + Orientvec[1];
orientvec[2] = (float)RotVvec[2]*time/1000 + Orientvec[2];

//////////////////////////////
// Accel functions

// Acc_init

// Acc_getAccVec

/
/////////////////////////////

/JJJJJJJJJJJJJJ e e e e e e e e e e e e e e e e e e T e e e e e e e e e e e Y e e e e e Y e e e e e Y e e e e e e e e e e e e e e e e e
ww Yok ww e ww Yok

* Function to 1n1t1a11ze the acce1erometer For spec1f1cs on what is being set
* look at the datasheet.

***/

void Acc_init(void)

~

bool ack;

I2Cstart();
I2cwait();

ack = 1I2Ctx(AccAddw);
I2cwait();

ack = 12Ctx(0x20);
I2cwait();

ack = 12Cctx(0b01000111);
I2cwait();

I2Cstop();

I2cwait();

return;

/***

* Function to get the acceleration vector. This gives acceleration 1in x, vy,
* and z. No inputs needed, and changes the global variables.

* notes: This function definitely works, and was working really well. This is
* why the entire PID controler is based off accelerations.

void Acc_getAccvec(void)

bool ack;
short int X1sb, Xmsb, Ylsb, Ymsb, zZlsb, zmsb, Temp;
float Tempf;
I2Cstart();
I2cwait(Q);
ack = I2ctx(AccAddw);
I2cwait(Q);
ack = 12Ctx(0b10101000);
I2cwait(Q);
I2Crestart();
I2cwait(Q;
Page 6

I2C
ack = 12Ctx(AccAddr);
I2cwait();

I2Csetrx();

I2cwait();

X1sb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

Xmsb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

Y1lsb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

Ymsb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

Z1sb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

zmsb = I2Crx(1);

I2cwait();

I2Cstop();

I2cwait();

Temp = ((Xmsb << 8) | XlIsb);
Tempf = (float)Temp; /111171777777/77/777777/7/777
Tempf = ((Tempf*2)/32768);

}f (Tempf - Accvec[1l] > 0.3 || Accvec[1l] - Tempf > 0.3)

Tempf = Accvec[1];
Accvec[1l] = Tempf; // Have to rotate axis
Temp = ((Ymsb << 8) | Ylsb); [11177177777777/77/777777/7
Tempf = (float)-1*Temp;

Tempf = ((Tempf*2)/32768);
}f (Tempf - Accvec[0] > 0.3 || Accvec[0] - Tempf > 0.3)

Tempf = Accvec[0];

}

Accvec[0] = Tempf;

Temp = ((zZmsb << 8) | zlsb);

Accvec[2] = (float)Temp;

Accvec[2] = ((AccVec[Z] 2)/32768) + Acczoff;

Yedehededeededeededeededehdedehededehededeededeededeededefededefededeedededededeedededededededede el

Funcion to get Z offset of the accelerometer to ensure 1 g when stationary.
* Runs 256 times, takes an averages, subtracts that from 1 g, then always adds

* that number to Acceleration Vector.

***/

zoid Acc_getzoff(void)

g
w

float Data, Temp;
Data = O;

int i;

for (1 =0;7<256;i++)

Acc_getAccvec();
Page 7

B R A
BB R

\ \\\\E\ i

I2C
Temp
Data

Accvec[2];
Data+Temp;

}
Acczoff = 1-(Dpata/256);

///////////////////////////////

Magnetometer function

/ Mag_init
/ Mag getMagvec

getTemp

/
//////////////////////////////

e e e e e Yo e e Yo e e Y e
ww Yok ww e w w

In1t1a11zed magnetometer For spec1f1cs on what is 1n1t1a11zed Took at
values sent, then look it up in the damn datasheet. Magnetometer never
worked proper1y. Not sure if that's because of a hardware issue (had a wire
runing right over sensor which could produce magnetic field) or if its a
software re1ated th1ng

e e dededeve e de Yo e e Yo e ot e dede e e de e Yoo e Yo e e e _.l_.l_.l_.l_.l_.l_J_J_J_J_J_J_J_J_J_J_J_J.J.J..v..v..v..v..v..v_.l_.l_.n..l..l..l..l..l..l..l..l_/
ER e A L o R e e A A o A A L A A L A e L o o e o e A S

vo1d Mag_1n1t(vo1d)

bool ack;

I2Cstart();
I2cwait();

ack = 12Cctx(MagAddw) ;
I2cwait();

ack = 12Ctx(0x00);
I2cwait();

ack = 12Ctx(0b10011000);
I2cwait();

ack = 12ctx(0b00100000);
I2cwait();

ack = 12Ctx(0x00);
I2cwait();

I2Cstop();

I2cwait();

return;

e e e e e Yo e e Yo e e T e
ww Yok ww e B e A A e L o L R R A L b

This funct1on returns the magnetometer vector in x, vy, and z. Again, this

* never really returned reasonable values. Possibly software related. The

b3
o
%
o
P

stupid fucking datasheet for this part says almost nothing about the data

* received, or how precise (how_many bits Tong) it actually is. Therefore,
* not entirely sure what prescaling needs to be....just to re-iterate-fuck the

* datasheet.

***/

zoid Mag_getMagvec(void)

bool ack;
short int Xlsb, Xmsb, Ylsb, Ymsb, zZlsb, zmsb, Temp;
I2Cstart();
I2cwait();
ack = 12Cctx(MagAddw) ;
I2cwait();
ack = 12Ctx(0x83);
I2cwait();
I2Crestart();
I2cwait();
Page 8

I2C
ack = 12Cctx(MagAddr);
I2cwait();

I2Csetrx();

I2cwait();

X1sb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

Xmsb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

Y1lsb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

Ymsb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

Z1sb = 12Crx(0);

I2cwait();

I2Csetrx();

I2cwait();

zmsb = I2Crx(1);

I2cwait();

I2Cstop();

I2cwait();

Temp = ((Xmsb << 8) | XlIsb);

//Temp >>= 4;
1

Magvec[1] = (float)Temp;

Magvec[1l] = (Magvec[1]* 1. 3/2048);
Temp = ((Ymsb << 8) | Ylsb);

//Temp >>= 4;

Magvec[0] = (float)Temp;

Magvec[0] = —1 (MagVec[O] 1.3/2048);
Temp = ((Zmsb << 8) | zlsb);

//Temp >>= 4;

Magvec[2] = (float)Temp;

Magvec[2] = Magvec[2]*1.3/2048;

/JJJJJJJJJJJJJJ e e e e e e e e e e e e e e e e e e T e e e e e e e e e e e e e e e e e Y e e e e e T e e e e e e e e e e e e e e e e e
ww Yok ww e ww Yok

* This function was written to test the magnetometer by gett1ng the temperature
* value from it. Never returned a valid tempurature. Again, not sure if that
* is because of the function, or if the magnetometer just didn't want to

* cooperate. Again, fuck this datasheet, thought the little documentation it

* had on the tempurature was more than for the actual magnetometer

e dede e e Yo e e Yo e Yo e e e e de e e de Yo e e e Yo e e e e e e dedeve e Yo Yo e Yo e e .n.l.l.l.l.l.l.l.l/

§1oat Mag_getTemp(void)

bool ack;
short int Xl1sb, Xmsb, Temp;
I2Cstart();
I2cwait();
ack = 12Cctx(MagAddw) ;
I2cwait();
ack = 12Ctx(0xBl);
I2cwait();
I2Crestart();
I2cwait();
ack = 12Ctx(GyroAddr);
Page 9

I2C
I2cwait();
I2Csetrx();
I2cwait();
Xmsb = 12Crx(0);
I2cwait();
I2Csetrx();
I2cwait();
X1sb = 12Crx(1);
I2cwait();
I2Cstop();
I2cwait();

Temp (Xmsb<<8) | Xlsb;
Temp Temp>>4;

Temperature = (float)Temp;
Temperature = Temperature/8;

}
;;//

Barometer functions
// Bar_getParam
Bar_getTemp

//
///

short int ACl, AC2, AC3, Bl, B2, MB, MC, MD;
unsigned short int AC4, AC5, ACG6;

/JJJJJJJJJJJJJJ e Y e e Y e e Y e
ww Yok ww e w Yok

* Function to get a11 the parameters in order to calculate tempurature (and

acurate tempurature reading, and kinda gave up on it to focus on more

you Took at this one. Has absolutely nothing on it. Does tell what to do

SLosLosmosm osh sm
bR I O R

later pressure and altitude). Not sure if working right or not. Never got
pressing matters. Also, if you thought the Mag datasheet sucked, wait till

to get temp and pressure values, but does so by assuming you have their code
and are using their functions (aka saying stuff along the Tines of get temp

* by using Bar.workPerfectly&GetTemp() funcition, or something equally useless

***J.J.J.J.J‘J‘J‘J‘J‘.L.L.l..l..l..l..\..\..\..\..l_.l..l..l..l.J.J.J.J‘J‘J‘J‘.L.L.L.L.L.L.L.L.\..\..\..l..l..l..l..l..l..l..l..l./

void Bar_getParam(void){
bool ack;
short int h,1;

LILIL1T7177777777007177777777777777777777777

//Code to get stuff from Barometer
//
I2Cstart();
I2cwait();
ack = I2Ctx(OXEE);
I2cwait();
ack = 12Ctx(0xAA);
I2cwait();
I2Crestart();
I2cwait();
ack = I2Ctx(OXEF);
I2cwait();
//
//Get lots of data
/11117771777 77/77/77/777/777/77/7/77/77/77/77/
I2Csetrx();
I2cwait();
h = 12Ccrx(0);
I2cwait();
Page 10

I2C
I2Csetrx();
I2cwait();
1 = 12Crx(0);
I2cwait();
ACl = (h<<8) | T1;

I2Csetrx();
I2cwait();

h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();

1 = 12Crx(0);
I2cwait();

AC2 = (h<<8) | 1;

I2Csetrx();
I2cwait();

h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();

1 = 12Crx(0);
I2cwait();

AC3 = (h<<8) | 1;

I2Csetrx();
I2cwait();

h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();

1 = 12Crx(0);
I2cwait();

AC4 = (h<<8) | 1;

I2Csetrx();
I2cwait();

h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();

1 = 12Crx(0);
I2cwait();

AC5 = (h<<8) | 1;

I2Csetrx();
I2cwait();

h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();

1 = 12Crx(0);
I2cwait();

AC6 = (h<<8) | 1;

I2Csetrx();
I2cwait();
h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();
Page 11

I2C
1 = 12Crx(0);
I2cwait();
= (h<<8) | 1;

I2Csetrx();
I2cwait();
h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();
1 = 12Crx(0);
I2cwait();
= (h<<8) | T1;

I2Csetrx();
I2cwait();
h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();
1 = 12Crx(0);
I2cwait();
= (h<<8) | T1;

I2Csetrx();
I2cwait();
h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();
1 = 12Crx(0);
I2cwait();
= (h<<8) | T1;

I2Csetrx();
I2cwait();
h = 12Ccrx(0);
I2cwait();
I2Csetrx();
I2cwait();
1 = 12Crx(1);
I2cwait();
= (h<<8) | T1;

/;I/:////////////{///////////////////////////
inish rotocol
//
I2Cstop();

IZCwa1t(),

/***

* Function to determine temperature from Barometer data. Not sure if it is
* correct or not. Consult the stupid fucking datasheet. It should be noted
* that if this were ever to be actually implemented, it should be split up into
* 2 functions. One to tell the barometer to measure temp. And the other to get
the data once it was finished. /
int Bar_getTemp(void){

bool ack;

short int UT;

short int MSBdata, LSBdata;

g
w

Page 12

I2C
Tong int X1, X2, B5, T;

//
/Code to get Barometer to collect data
//
I2Cstart();

I2cwait();

ack = I2Ctx(OXEE);

I2cwait(Q);

ack = I2Ctx(0OxF4);

I2cwait(Q);

ack = I2Ctx(0x2E);

I2cwait(Q);

I2Cstop();

I2cwait(Q);

__deTay_us(4500);

///////////////////é////////////////////////

//Code to get Tem
//
I2Cstart();
I2cwait();

ack = I2Ctx(OXEE);
I2cwait();

ack = 12Ctx(0xF6);
I2cwait();
I2Crestart();
I2cwait();

ack = I2Ctx(OXEF);
I2cwait();
I2Csetrx();
I2cwait();

MSBdata = I2Crx(0);
I2cwait();
I2Csetrx();
I2cwait();

LSBdata = I2Crx(1);
I2cwait();
I2Cstop();
I2cwait();

UT =(MSBdata<<8) | LSBdata;

L1010 177777777777777777777777177777

Calculate true temp
//
= (UT - AC6)*AC5/pow(2,15);
X2 MC*pow (2, 11)/(X1+MD),
B5 X1+X2;
T = (B5+8)/pow(2,4);
return (int)T;

Page 13

sk sk 3R sk s
ok N N N X

ek sk sk o % N % % ok kN3

PWM

File: PwMfunctions.c
Author: Jay Burns

Created on April 3, 2012, 9:47 PM

README

There are four functions you need to call to effectively use the PWM code.

First, call initializePwMcapture() and initializePwMoutput(). This will

setup the control registers and timers so input and output is ready to go. Then,
your while Toop,

call getPwM(); This will read the PwM values. They are stored in:

CHlvalue
CH2value
CH3value
CH4value
These are all values of 0 to 100.

CH5status
CHS5status is either 1 or 0. I suggest your main Tooking something Tike this:

int main(void)

initializepPwMcapture();
initializePwMoutput();

while(1)
{

getPwmM(Q) ;
}f (CH5status == 1)

setPower (75, 74, 76, 72); //This is just an example output to the

motors. Remember, it's

.

/

//

//setPower(motorl, motor2, motor3, motor4)
else if (CHS5status == 0)

setPower(0, 0, 0, 0);

Function Prototypes

void getPwM(void);

void initializePwMcapture(void);
void initializePwMoutput(void);
void setPower(int, int, int, int);
float readcHl(int);

float readCH2(int);

float readCH3(int);

float readCH4(int);

void readCH5(void);

//Declare Global variables

int IClcCapturel, IClCapture2, IC2Capturel, IC2Capture2, IC3Capturel, IC3Capture2,
IC4Capturel, IC4Capture2, IC5Capturel, IC5Capture2;

int CHlcount,CH2count, CH3count, CH4count, CH5count, CHlvalue, CH2value, CH3value,
CH4value, cH5value, CHS5status;

Page 1

void initializePwMoutput(void)

int pulseperiod = 4629;

int pulsemin =

280;

PWM

// Configure Output Functions (Table 10-4)

RPOR5bits.RP1IR

RPOR12bits.RP24R
RPOR11bits.RP23R
RPOR11bits.RP22R

//set up ocCcl

OC1CON1
OC1CON2
OC1RS

value

OC1R

value

OC1CON1bits
OC1CON2bits
OC1CON1bits
OC1CON2bits

.OCTSEL
. SYNCSEL
.OCM

.OCTRIG

//Set up 0C2

OC2CON1
OC2CON?2
OC2RS

value

OC2R

value

OC2CON1lbits
OC2CON2bits
OC2CON1lbits
OC2CON2bits

.OCTSEL
. SYNCSEL
.OCM

.OCTRIG

//Set up 0C3

OC3CON1
OC3CON2
OC3RS

value

OC3R

value

OC3CON1lbits
OC3CON2bits
OC3CON1lbits
OC3CON2bits

. OCTSEL
. SYNCSEL
.OCM

.OCTRIG

//Set up 0c4

0OC4CON1
OC4CON2
OC4RS

value

OC4R

value

OC4CON1lbits
OC4CON2bits
OC4CON1lbits
OC4CON2bits

.OCTSEL
. SYNCSEL
.OCM

.OCTRIG

18;
19;
20;
21;

0x0000;
0x0000;
pulsemin;

pulsemin;

0b000;
0b01100;
8b110;

0x0000;
0x0000;
pulsemin;

pulsemin;

0b000;
0b01100;
8b110;

0x0000;
0x0000;
pulsemin;

pulsemin;

0b000;
0b01100;
8b110;

0x0000;
0x0000;
pulsemin;

pulsemin;

0b000;
0b01100;
8b110;

0oCl to
0C2 to
0C3 to
0C4 to

Pin RP11 (RDO)
Pin RP24 (RD1)
Pin RP23 (RD2)
Pin RP22 (RD3)

// Assign
// Assign
// Assign
// Assign

//Clear control registers
//Clear control registers o
//Load secondary register with initial pulse

//Load primary register with initial pulse

//Select Timer 2 as source
//Select Timer 2 as sync
//Select Edge aligned PwM

//Clear control registers
//Clear control registers
//Load secondary register with initial pulse

//Load primary register with initial pulse

//Select Timer 2 as source
//Select Timer 2 as sync
//Select Edge aligned PwM

//Clear control registers
//Clear control registers
//Load secondary register with initial pulse

//Load primary register with initial pulse

//Select Timer 2 as source
//Select Timer 2 as sync
//Select Edge aligned PwM

//Clear control registers
//Clear control registers
//Load secondary register with initial pulse

//Load primary register with initial pulse
//Select Timer 2 as source

//Select Timer 2 as sync
//Select Edge aligned PwM

//set up Timer2, our timer for output PWM

Page 2

PWM

TMR2 = 0; //set Timer2 to O

PR2 = pulseperiod; //Load number of increments in period
T2CONbits.TCKPS = 0b10; //Prescale value is 64

IFSObits.T2IF = 0; //Clear Timer2 interrupt flag
IECObits.T2IE = 1; //Enable Timer2 interrupts
T2CONbits.TON = 1; //Turn Timer2 on

}
void initializePwMcapture(void)

// Configure output Functions (Table 10-4)

RPINR7bits.ICIR = 2; //Assign Input Capture 1 to RP2 (RDS8)

RPINR7bits.IC2R = 4; //Assign Input Capture 2 to RP4 (RD9)

RPINR8bits.IC3R = 3; //Assign Input Capture 3 to RP3 (RD10)

RPINR8bits.IC4R = 12; //Assign Input Capture 4 to RP12 (RD11)

RPINR9bits.IC5R = 42; //Assign Input Capture 5 to RPI42 (RD12)

//Initalize IC1l

TRISDbits.TRISDS8 = 1; //Set RD8 to 1input

IC1CONlbits.ICM = 0b000; //This should reset the overflow condition flag,
reset the FIFO to empty, and reset the prescale count

ICICON1lbits.ICTSEL = 0b010; //Select Timer4 as timer

ICI1CONlbits.ICM = 0b01; //Capture timer value on every edge

ICICON1lbits.ICI = 0b00; //Interrupt on every capture event

IC1CON2bits.SYNCSEL = 0b01110; //Sync with Timer4

IC1CON2bits.ICTRIG = O; //Clear trigger bit for synchronous mode.

IECObits.ICIIE = 1; //Enable ICl interrupt

IFSObits.IClIF = 0; //set interrupt flag status to O

//Initalize IC2

TRISDbits.TRISD9 = 1; //Set RD9 to 1input

IC2CONlbits.ICM = 0b000; //This should reset the overflow condition flag,
reset the FIFO to empty, and reset the prescale count

IC2CON1lbits.ICTSEL = 0b010; //Select Timer4 as timer

IC2CONlbits.ICM = 0b01; //Capture timer value on every edge

IC2CON1bits.ICI = 0b00; //Interrupt on every capture event

IC2CON2bits.SYNCSEL = 0b01110; //Sync with Timer4

IC2CON2bits.ICTRIG = O; //Clear trigger bit for synchronous mode.

IECObits.IC2IE = 1; //Enable IC2 1interrupt

IFSObits.IC2IF = 0; //set interrupt flag status to O

//Initialize 1IC3

TRISDbits.TRISD10 = 1; //Set RD10 to 1input

IC3CONlbits.ICM = 0b000; //This should reset the overflow condition flag,
reset the FIFO to empty, and reset the prescale count

IC3CON1lbits.ICTSEL = 0b010; //Select Timer4 as timer

IC3CONlbits.ICM = 0b01; //Capture timer value on every edge

IC3CONlbits.ICI = 0b00; //Interrupt on every capture event

IC3CON2bits.SYNCSEL = 0b01110; //Sync with Timer4

IC3CON2bits.ICTRIG = O; //Clear trigger bit for synchronous mode.

IEC2bits.IC3IE = 1; //Enable IC3 interrupt

IFS2bits.IC3IF = 0; //set interrupt flag status to O

//Initialize 1IC4

TRISDbits.TRISD1l = 1; //Set RD11l to 1input

ICACONlbits.ICM = 0b000; //This should reset the overflow condition flag,
reset the FIFO to empty, and reset the prescale count

IC4CON1bits.ICTSEL = 0b010; //Select Timer4 as timer

ICACONlbits.ICM = 0b01; //Capture timer value on every edge

IC4CON1bits.ICI = 0b00; //Interrupt on every capture event

IC4CON2bits.SYNCSEL = 0b01110; //Sync with Timer4

IC4CON2bits.ICTRIG = O; //Clear trigger bit for synchronous mode.

Page 3

PWM

IEC2bits.IC4IE = 1; //Enable IC5 interrupt

IFS2bits.IC4IF = 0; //set interrupt flag status to O

//Initialize IC5

TRISDbits.TRISD12 = 1; //Set RD12 to 1input

IC5CONlbits.ICM = 0b000; //This should reset the overflow condition flag,
reset the FIFO to empty, and reset the prescaler count

IC5CON1bits.ICTSEL = 0b010; //Select Timer4 as timer

IC5CON1lbits.ICM = 0b01; //Capture timer value on every edge

IC5CON1bits.ICI = 0b00; //Interrupt on every capture event

IC5CON2bits.SYNCSEL = 0b01110; //Sync with Timer4

IC5CON2bits.ICTRIG = O; //Clear trigger bit for synchronous mode.

IEC2bits.IC5IE = 1; //Enable IC5 interrupt

IFS2bits.ICS5IF = 0; //set interrupt flag status to O

//set up Timer4, our clock for PwM

//IFS1bits.T41F = 0; // Ccommented out because I couldn't think of a
reason to need the 1nterrupt

//IEClbits.T41E = 1; // Enable Timer4 Compare interrupts

T4CONbits.TON = 1; // Start Timer2 with assumed settings

T4CONbits.TCKPS = 0b10; // Timer4 Prescale value = 64

TMR4 = 0; // Set value of Timer4 to O

¥01d —attribute__((interrupt, shadow, no_auto_psv)) _IClInterrupt()
IFSObits.IC1IF = 0; //Reset respective interrupt flag
if (PORTDbits.RD8 == 1) //1f the input is high, start count

IClCapturel = ICI1BUF; //Load the start value from the capture buffer

%1se if (PORTDbits.RD8 == 0) //1f the input is low, end count
IClCapture2 = ICI1BUF; //Load the end value from the capture buffer
_ CHlcount = (IClCapture2 - IClCapturel); //Running time is ent time minus start
time
if (CHlcount < 0) //Verify integrity of count
{CHlcount = CHlcount + 4619;}
void __attribute__((interrupt, shadow, no_auto_psv)) _IC2Interrupt()
IFSObits.IC2IF = 0; //Reset respective interrupt flag
}f (PORTDbits.RD9 == 1)

IC2Capturel = IC2BUF;

?1se if (PORTDbits.RD9 == 0)

IC2Capture2 = IC2BUF;

CH2count = (IC2Capture2 - IC2Capturel);

if (CH2count < 0) //Verify integrity of count
CH2count = CH2count;
Page 4

}

PWM

void __attribute__((interrupt, shadow, no_auto_psv)) _IC3Interrupt()

}

IFS2bits.IC3IF = 0; //Reset respective interrupt flag
}f (PORTDbits.RD10 == 1)

IC3Capturel = IC3BUF;

%1se if (PORTDbits.RD10 == 0)
IC3Capture2 = IC3BUF;

CH3count = (IC3Capture2 - IC3Capturel);

if (CH3count < 0) //verify integrity of count
CH3count = CH3count + 4619;

void __attribute__((interrupt, shadow, no_auto_psv)) _IC4Interrupt()

}

IFS2bits.IC4IF = 0; //Reset respective interrupt flag
if (PORTDbits.RD11l == 1)

IC4Capturel = IC4BUF;

%1se if (PORTDbits.RD11l == 0)
IC4Capture2 = IC4BUF;

CH4count = (IC4Capture2 - IC4Capturel);

if (CH4count < 0) //verify integrity of count
CH4count = CH4count + 4619;

void __attribute__((interrupt, shadow, no_auto_psv)) _IC5Interrupt()

}

IFS2bits.IC5IF = 0; //Reset respective interrupt flag
if (PORTDbits.RD12 == 1)

IC5Capturel = IC5BUF;

%1se if (PORTDbits.RD12 == 0)
IC5Capture2 = IC5BUF;

CH5count = (IC5Capture2 - IC5Capturel);

if (CHS5count < 0) //verify integrity of count
CH5count = CH5count + 4619;

void __attribute__((interrupt, shadow, no_auto_psv)) _T2Interrupt()

Page 5

PWM
IFSObits.T2IF = 0;

void __attribute__((interrupt, shadow, no_auto_psv)) _T4Interrupt()

IFS1lbits.T4IF = 0;

void setPower(int one, int two, int three, int four)_ //Function takes motor thrust
commands from 0 to 100% and outputs OCxR register value

OC1R = (one) + 280; //Scale up the percentage to register value
OC2R = (two) + 280;
0OC3R = (three) + 280;
0C4R = (four) + 280;
float readCH1(int count) //Takes captured value and translates it to

percentage 0 to 100

float value = 0; //Placeholder variable
if (count > 500 || count < 250) //Check intergrity of value, if out of 6-10.5%
rang%, just write it as low value, 0%

value = 0;
%1se //1If it's good, compute its percentage range
value = 0.510126*count - 145.38591;
return value; //Return that the percentage
float readCH2(int count) //Takes captured value and translates it to

percentage 0 to 100

float value = 0; //Placeholder variable
if (count > 500 || count < 250) //Check intergrity of value, if out of 6-10.5%
range, just write it as low value, 0%

value = 0;
%1se //1If it's good, compute its percentage range
value = 0.50505051*count - 139.39394;
return value; //Return that the percentage
float readCH3(int count) //Takes captured value and translates it to

percentage 0 to 100
float value = 0; //Placeholder variable
if (count > 500 || count < 250) //Check intergrity of value, if out of 6-10.5%
range, just write it as low value, 0%
value = 0;
else //1If it's good, compute its percentage range

{
value 0.50761421*count - 141.62437;

Page 6

PwWM
return value; //Return that the percentage

float readcH4(int count) //Takes captured value and translates it to
percentage 0 to 100

float value = 0; //Placeholder variable
if (count > 500 || count <_250) //Check intergrity of value, if out of 6-10.5%
rang?, just write it as Tow value, 0%

value = 0;

else //1f it's good, compute its percentage range
value = 0.51282051*count - 144.61538;

return value; //Return that the percentage

}
void readcH5(void)

if (CH5count > 500 && CH5count < 530)

! CHS5status = 1;
e1se{1f (CH5count < 400 && CHS5count > 230)
CH5status = 0;
}
}
¥01d getPwM(void)
CHlvalue = readCH1l(CHlcount); //Read in the input channels
CH2value = readCH1(CH2count);
CH3value = readCH1(CH3count);
CH4value = readCH1(CH4count);
readCH5Q);

Page 7

Terminaluart
/*This header file contains the functions
necessary to output a str1ng, char, and
an integer to a terminal*/

#include <stdlib.h>
#include <p24F1256GB110.h>
#include <libpic30.h>
#include <stdbool.h>

// Define output port #s
#define UlTx 3;
#define UIRTS 4;

// Initialize USART1 to USB input
void init_usart(unsigned short rate)

RPINR18bits.UIRXR = 38; //Assign UIRX to pin RPI38
RPINR18bits.UICTSR = 40; //Assign ULCTS to pin RPI40
RPOR7bits.RP15R = UITX; //Assign UlTx to pin RP15
RPOR15bits.RP30R = UIRTS; //Assign UIRTS to pin rp2l
UIMODEbits.UARTEN = 1; //Enable vartl

UIMODEbits.UEN = 0b10; //TX, Rx, CTS, and RTS enabled & used
UIMODEbits.PDSEL = 0bO0O; //8-bits no parity

U1STAbits.UTXEN = 1; //Enable transmit

U1BRG = rate; //set the BRG register to rate

JOROR OO ROROROROROS N RSO SFOSOSONOROSOSOUSOSOSOSOSUSUSUSOSUSTSUSURTRUSUSCSOSOSURUSUSURK SOROSUSCOROSURTROSORCSONOSOR NOSOROSOSOSOSOUSOSUSUSOSUSTRON
E R o R A A e L A A A L R A R A o A A e e L e R e L o R L R e A A e A g o g AR L A e i L S o e R R L
7

* Function to put a char to the terminal

e e e e e Yo e e Yo e IJJJJJJJJ_J_J_J_JJJllllllll.l.l.l.'.'.'.'.'-'/

void myputc(char value)

// volatile bit TSReg = ULSTAbits.TRMT;
while(lU1STAbits.TRMT) ;
UITXREG = value;
return;

YedeededeededeededeededehededehededehededeedededededeededefededeTededeedededededeedededededededede et
- . . .

* Function to put a string to the terminal
***/

void myputs(char *strn)

int i = 0;
?h11e(strn[1] I= NULL)

myputc(strn[i]);
i++;

B T S R S S R S R R PR R NS
w ER i e T L R A A e A A L A R i A b L A b e A A b A S
7

* Function to put an integer to the terminal

Sedede e e Yo e Yo Yo e Yo e e Yo de e e e e k.v.n.l.l.l.l.l.l.l.l.l.l.l.l.nlllllllIJJJJJJJJ.J.J.J.JJJvvvvvvvv.p.l.l.l.l.l.l.l-'/

¥o1d myputi(int value)

char cvalue[10];
itoa(cvalue, value, 10);
myputs(cvalue);

Page 1

Terminaluart

Page 2

Misc
This header file is primarily a place where all the miscellaneous functions
I wrote ended up, hence the name.

JOROR OO OROROROROR N RSO SRORSONOROSOSOSOSOSOSOSUSUSUSOSUSTRUSURTSUNUSSOSOSURUSUSURSOROSOSCROSURTROSORCSONOSOR NOSOROSOSOSOSUSOSUSOUSOSUSTRON /
E R o o R A A L A A A o L R A R L A o A e L e L R e L o L A R L R e A A b A A L A AR A e b L L o e A e R R S

g
w

*

Yedeededeededeededeededehdedeededehededeedededededeededefededefededededededededeedededededededede el

* Function to print the offsets to the screen. Got tired of this giant block
* of text in the main, so put it in a function.

RO NN N RORORONCRORK N RO FONCORORCRORCNKRORORCRCRORRNK IR KRR K AR R AR RN SRR K RSN SIORORK K AFOR K RSN RN N RORONCRORON /
PR I R T L o R A e A L b 1 E o A A R L A R R A L e e A R A A e L o o Ak T (o T A o T R A e L A e L A o L L SR e A b

¥01d Printoffs(void)

char string[ZO],
myputc('\n
myputc('\r');
myputs('start:");
myputc('\n');
myputc('\r');
sprintf(string, "zoff: %f",Acczoff);
myputs(str1ng),
myputc('\n');
myputc('\r');
myputs("Rotational offsets: ");
myputi (RotOff[0]);
myputc(',"');
myput1(RotOff[1]),
myputc(',
myput1(RotOff[2]),
myputc(' '),
myputc('\n');
myputc('\r');

JOROR OO ROROROROROS N RSO SFOSOSOSOROSOSOUSOSOSOSOSOSUSUSOSUSTSUSURCRUSUSSOSOSURCUSUSURSOROSUSCOROSURCROSURCSONOSOR NOSOROSOSOSOSOSOSUSUSOSUSTSON
E R o o R A A i L A A A o L R A R L A o A e L e L R e L b o L A R L L R e A A e A A L A AR e A g b L L o e A e R R

* Function to print out most, if not all, of the data to the screen. Again

* wrote the funciton because I was tired of the big block sitting in the main.
***/

void PrintData(void)

char string[20];

myputc('<");
sprintf(string, "%f",Accvec[0]);
myputs(string);
myputc(',');
sprintf(string, "%f",Accvec[l]);
myputs(string);
myputc(',");
sprintf(string, "%f",Accvec[2]);
myputs(string);
myputc('>"');
myputc('\t');
myputc('<');
sprintf(string, "%f",Magvec[0]);
myputs(string);
myputc(',"');
spr1ntf(str1ng, "%f" ,Magvec[1]);
myputs(string);
myputc(',');
sprintf(string, "%f",Magvec[2]);
myputs(string);
myputc('>");
myputc('\t');
myputc('<");

Page 1

Misc
myputi(RotVec[O]);
myputc(',');
myput1(RotVec[1]),
myputc(',’
myput1(RotVec[2]),
?yputC(>');

myputc('\t');

myputc('<");

sprintf(string, "%f",orientvec[0]);
myputs(string);

myputc(',');

spr1ntf(str1ng, "%f",orientvec[1]);
myputs(string);

myputc(',"');

sprintf(string, "%f",orientvec[2]);
myputs(string);

my9utc('>');

myputc('\n');
myputc('\r');

e e e e Yo e Yo e e e e e e Yo e

/JJJJJJJJ_J_J_J_JJJIII

Function I put together to round a number Pretty sure it works Can t
* belive the math.h header didn't have this function in it.

J-J-J-J-J-J-J-J¢J¢J¢J¢J¢.L.L.L.L.L.L.\-.\-.\-.LJ_J-J-J-J-J-J-J-J¢J¢J¢J¢J¢.L.L.L.L.k.k.k.k.'\:.k.k.k.k.k.k.k.k.k.k/

float round(float num)

g

int numi;
numi num*10;
numi numi%10;

if (numi >= 5)
if (hum >=0)
¢ return (float)ceil(num);
else
return (float)floor(num);

}

else

{ if (num >= 0)
¢ return (float)floor(num);
else

return (float)ceil(num);

JOROR OO OROROROROSON RSO SFOSOSONOROSOSOUSOSOSOSOSUSUSUSOSUSTSUSURTRUNURSOSOSORCUSUSUR SOROSUSCOROSURTROSUSCSONOROR NOSOROSOSOSOSOUSOSUSUSUSUSTRON
B o o o R A A o A A R o A R A o A A R e L e L S e L L A R e L o L A A e A A o e g A L A e L A o R e e R S

Function written to initialize timer 1. This is used to calculate time it
* takes for the loop to run to calculate integral and derivative portions of
* the PID controler
void init_TMR1(void)
Page 2

Misc

TMR1 = 0; //Set Timer2 to O
T1CONbits.TCKPS = 0b10; //Prescale value is 8
T1CONbits.TON = 1; //Turn Timer2 off

Page 3

